A STUDY OF IMPACT OF ONLINE LEARNING ON THE ACADEMIC PERFORMANCE OF THE UNDERGRADUATE STUDENTS THROUGH PARTIAL LEAST SQUARE STRUCTURAL EQUATION MODELING (PLS-SEM AND NECESSARY CONDITIONS ANALYSIS (NCA)

Vivek Maroti Wankhade

Assistant Professor, Department of Management Studies, Thakur College of Science and Commerce

ABSTRACT

The present study aims to study the effect of Online learning on the Academic performance of the learners. The combination of PLS-SEM and NCA analysis was used to analyze the effect of course material, ease of use, ease of learning, faculty teaching and student's expectation on the academic performance with student's satisfaction as a mediating variable. A sample of 627 respondents were collected from undergraduate learners of University of Mumbai. The findings revealed that course material, ease of use, ease of learning, faculty teaching, student's perception are necessary and sufficient factors for predicting the effect on the academic performance of the learners. Student's Expectation, Ease of Learning and Satisfaction are important variable and the performance is excellent whereas Ease of use, course material and Faculty teaching were important but the performance was poor.

Keywords: Online Learning, Academic Performance, PLS-SEM and NCA

INTRODUCTION

Online learning during the Covid-19 pandemic was conducted for the undergraduate students through Online platforms like Zoom meetings, Microsoft teams, Google meet, Webex etc. The satisfaction level of the learners for Online learning was different for different learners. The satisfaction level had affected the academic performance of the undergraduate learners.

The studies conducted in the past revealed that the Online learning had positive as well as negative effect on the academic performance Asaad Mubarak Elshareef Mohammed (2022). Independent factors like course design, Prompt feedback and Student's satisfaction had a positive effect on the academic performance of the learners Ram Gopal Singh, Varsha Singh and Arun Aggarwal (2021). Online learning motivates learners to learn independently Balalakshmi and R Savithri (2021). Student's satisfaction was different for different level of online learning. Online learning Level was moderate among the learners Gio L. Ledesma (2021).

Our present studies tried to remove these inconsistencies by identifying the gaps in the past studies by analysing the Impact of Independent factors like Course material, Ease of Use, Ease of Learning, Faculty teaching and Student's Perception on the academic performance of the learners with Student's Satisfaction as a mediating variable.

We have conducted PLS-SEM and NCA analysis to determine the necessary and sufficient factors for the academic performance of the learners and the critical level of the independent factors through bottleneck analysis. We also have analysed the important and performing factors for the academic performance through IMPA analysis .

THEORETICAL MODEL & METHOD :

To test the hypothesis proposed above we have developed a theoretical model which analyzes the impact of Course material, Ease of Learning, Ease of use, Faculty teaching, Students perception on the Student's Satisfaction which in turn has impact on the academic performance of the students (figure 1)

PLS - SEM Method was used for testing & analyzing the relationships between independent variables & dependent variables. Partial Least Squares (PLS) helps the researchers to analyze the relationships simultaneously. It also helps to analyze the mediation relationships with the regression analysis (Nur Ainna Ramli, Hengky Latan & Gilbert V. Nartea, 2018). PLS- SEM techniques are more appropriate for determining the causal predictive model (Chin, et al. 2020). PLS-SEM path modeling is useful technique to analyze and estimate the causal models (Hair et al 2021). PLS-SEM is beneficial for estimating models with many constructs, structural model relationships and many indicators per construct (Marko Sarsted and Joseph F.HairJr 2014). PLS SEM evaluation criteria provides the appropriate metrics for checking the result's robustness (Joseph F. Hair, Jeffrey J. Risher, Marko Sarstedt, Christian M. Ringle, 2019). Based on the findings of the above researchers we have decided to use PLS- SEM for the present study.

NCA analysis helps to identify the necessary conditions which are essential to achieve the desired outcome (Dul et.al 2016). The combined use of PLS-SEM and NCA helps the researchers in identifying the necessary factors

Volume 11, Issue 3 (II): July – September 2024

required for an outcome (Ritcher et al 2020). We have used PLS- SEM and NCA analysis to determine the necessary & sufficient conditions to achieve the desired level of outcome. IPMA was performed to determine the relative importance - performance dimension of the constructs. SmartPLS 3.0 software was used to analyze the model estimation (Ringle 2015).

MODEL RESULT ASSESSMENT:

A questionnaire with survey items having 5 - point Likert Scale was designed for the study (Table 1). For evaluation of survey items, a Pilot test was conducted by circulating 100 questionnaires among the learners of University of Mumbai. Corrections in the survey items were made based on the responses from the pilot test. The final Sample consisted of 627 learners form various programmes like BCom, BMS, BBI, BFM of University of Mumbai. There were no missing values in the final data collection since all the questions in the questionnaire were set to mandatory

Gender		Programme				Class	
Male	Female	BBI	BMS	BCOM	BFM	SY	TY
317	310	133	258	120	116	368	259

Table 1 : Demographic Distribution :

Findings of PLS-SEM:

Volume 11, Issue 3 (II): July – September 2024

ISSN 2394 - 7780

The present research study adopted Joseph Hair (2017,2019 et al) for assessment of the measurement model. To measure the common method bias in our study we followed Podsakoff and Organ,1986; Podsakoff et al 2003) and Kock (2015). Gender and Class were used as control variables related to student's academic performance to measure the collinearity among the variables. The inner variance inflation factors (VIF) are less than 3.3 (Kock 2015) (Table 2). We therefore conclude that our sample is free of common method bias and do not have any critical collinearity issues.

Indicator	Gender	Class
	VIF < 3	VIF < 3
CM1	2.967	2.967
CM2	2.867	2.867
CM3	2.803	2.803
EOU1	1.859	1.859
EOU2	1.814	1.814
EOU3	1.048	1.048
EOU4	1.633	1.633
F1	2.873	2.873
F2	2.842	2.842
F3	2.356	2.356
F4	2.088	2.088
L1	2.875	2.875
L2	2.232	2.232
L3	3.055	2.85
L4	2.981	2.981
P1	2.989	2.989
P2	3.644	2.644
Р3	3.557	2.557
P4	2.386	2.386
SE1	2.185	2.185
SE2	1.73	1.73
SE3	1.926	1.926
SS1	2.89	2.879
SS2	2.87	2.988
SS3	2.789	2.789
SS4	2.883	2.883

Table 2: Control Variables: Gender and Class

Source : Own Calculations

The bootstrapping procedure with 10000 sub samples, two -tailed test option with 95 % significance level was followed to test the significance level. The reflective measurement model was measured by analyzing the Convergent Validity and Internal Consistency reliability. The convergent validity was measured through indicator loadings and indicator reliability and the Internal consistency was measured through AVE, Cronbach Alpha and the composite reliability. All the indicator loading were above the threshold value of 0.70 and the indicator reliability values were more than 0.5 (Table 3). The latent variables had average extracted variance above the threshold value of 0.7 and 0.95 (Hair,et,al ,2017 (Table 3). we therefore assume that all the latent variables had reliability and convergent validity.

The discriminant validity was analyzed by using Heterotrait – Monotrait rate of correlations (HTMT) (Franke and Sarstedt 2019; Henseler, et al., 2015). The HTMT values for all the latent variables were below the threshold value of 0.9 (Table 5) and we therefore assume that the latent variables have discriminant validity.

The R^2 values were analyzed by comparing the R^2 values of the previous similar studies. We found that the R^2 values of our study .8281 and 0.87 were similar to the R^2 values of the studies conducted in the past .

Latent Variable	Indicators	Converge	ent Validity	Internal Consistency Reliability			
		Loadings	Indicator	AVE	Cronbach's	rho_A	Composite
		E	Reliability		Alpha		Reliability
		> 0.70	> 0.50	> 0.50	0.70 - 0.95		
Course Material	CM1	0.843	0.711	0.757	0.903	0.906	0.903
	CM2	0.842	0.709				
	CM3	0.924	0.854				
Ease of Learning	EOL1	0.849	0.721	0.7	0.903	0.904	0.903
	EOL2	0.784	0.615				
	EOL3	0.853	0.728				
	EOL4	0.859	0.738				
Ease of Use	EOU2	0.8	0.64	0.552	0.705	0.718	0.71
	EOU4	0.712	0.507				
Faculty Teaching	FT1	0.889	0.79	0.682	0.895	0.897	0.895
· ·	FT2	0.819	0.671				
	FT3	0.817	0.667				
	FT4	0.774	0.599				
Academic Performance	P1	0.921	0.848	0.732	0.916	0.918	0.916
	P2	0.828	0.686				
	P3	0.824	0.679				
	P4	0.847	0.717				
Student's Expectation	SE1	0.793	0.629	0.622	0.828	0.842	0.83
-	SE2	0.71	0.504				
	SE3	0.881	0.776				
	SS1	0.888	0.789	0.788	0.937	0.937	0.937
Student's Satisfaction	SS2	0.863	0.745				
	SS3	0.887	0.787				
	SS4	0.912	0.832				

Table 3 : Construct Reliability

Source: Own Calculations

 Table 4 : Construct Reliability of Items

	Indicators	Convergent Validity		Internal Consistency Reliability	
Items	mulcators	Converger	Indicator	AVE	Composite
		Loadings	Reliability	TTT D	Reliability
			2	>	
		> 0.70	> 0.50	0.50	
The course material(ppt) displayed during online learning	CM1	0.843	0.711		
was easy to understand					
The course material was well designed and organized during				0 757	0.903
Online learning	CM2	0.842	0.709	0.757	0.705
The course material(ppt) displayed during online learning					
helped me to learn quickly	CM3	0.924	0.854		
Online Learning was easy	EOL1	0.849	0.721		
Online learning was quick	EOL2	0.784	0.615	0.7	0.003
Online learning helped me to understand complex concepts	EOL3	0.853	0.728	0.7	0.905
Online learning helped me to remember things easily	EOL4	0.859	0.738		

ISSN 2394 - 7780

Online learning was easy through devices like	FOUR	0.0	0.64		
Laptop/Mobile Phones	EOU2	0.8	0.64	0.552	0.71
I could use the Zoom Online platform successfully every	FOUL	0 710	0.507		
time	EOU4	0.712	0.507		
Faculty teaching was effective during Online teaching	FT1	0.889	0.79		
The communication skills of the faculty were effective	FT2	0.819	0.671		
The faculty was enthusiastic while Online teaching	FT3	0.817	0.667	0.682	0.895
I receive prompt feedback from the faculty during online					
teaching	FT4	0.774	0.599		
Online learning helped me to improve my Analytical Skills	P1	0.921	0.848		
Online learning helped me to improve my Communication					
Skills	P2	0.828	0.686	0 722	0.016
Online learning has improved my confidence level	P3	0.824	0.679	0.732	0.910
Online learning had improved my overall academic					
performance	P4	0.847	0.717		
I expected that understanding of concepts through Online					
learning would be easy and quick	SE1	0.793	0.629		
I expected that Faculty will provide quick feedback during				0.622	0.92
Online learning	SE2	0.71	0.504	0.022	0.85
I believed that Online learning would improve my overall					
performance	SE3	0.881	0.776		
Online Classes were Valuable	SS1	0.888	0.789		
Online Classes increased my interest in learning	SS2	0.863	0.745		
Online Classes increased my understanding ability of various				0.788	0.937
concepts	SS3	0.887	0.787		
Overall, I am satisfied with Online Learning	SS4	0.912	0.832		
~					

Source: Own Calculations

Table 5: Discriminant Validity

Latent Variables	HTMT Values < 0.9
Ease of Learning <->Course Material	0.757
Ease of Use <-> Course Material	0.719
Ease of Use <-> Ease of Learning	0.666
Faculty teaching <-> Course Material	0.791
Faculty teaching <-> Ease of Learning	0.748
Faculty teaching <-> Ease of Use	0.669
Academic Performance <-> Course Material	0.739
Academic Performance <-> Ease of Learning	0.830
Academic Performance <-> Ease of Use	0.657
Academic Performance <-> Faculty Teaching	0.712
Student's Expectation <-> Course Material	0.789
Student's Expectation <-> Ease of Learning	0.800
Student's Expectation <-> Ease of Use	0.726
Student's Expectation <-> Faculty Teaching	0.748
Student's Expectation <-> Academic Performance	0.839
Student's Satisfaction <-> Course Material	0.721
Student's Satisfaction <-> Ease of Learning	0.886
Student's Satisfaction <-> Ease of Use	0.639
Student's Satisfaction <-> Faculty Teaching	0.694
Student's Satisfaction <-> Academic Performance	0.890
Student's Satisfaction <->Student's Expectation	0.829

Source: Own Calculations

ISSN 2394 - 7780

Volume 11, Issue 3 (II): July – September 2024

Robustness Check of the PLS-SEM Model

Unobserved Heterogeneity

To measure the unobserved heterogeneity among the groups we followed the guidelines given by Saresdt, et al., (2019). We measured the Heterogeneity among the groups using Prediction-Oriented Segmentation (PLS-POS) and Multi-Group Analysis (MGA). The MGA algorithm was ran for three groups, Group1 ,Group 2 and Group 3. For all the path coefficients the difference in p-vlaue of Group1 vs Group 2 , Group 2 vs Group 3 and Group vs Group 3 is above the threshold value of 0.05 (Table 6). We therefore assume that the there is no unobserved heterogeneity among the groups and there is homogeneity in our sample.

Path	Total Effects (Group1-Group2)	Original p-value (Group1 vs Group3)	New p-value (Group1 vs Group2)	New p-value (Group1 vs Group3)
CM -> PERF	0.378	0.16	0.1	0.11
CM -> SS	0.201	0.536	0.153	0.928
EOL -> PERF	0.064	0.372	0.485	0.744
EOL -> SS	0.161	0.127	0.168	0.253
EOU -> PERF	0.186	0.995	0.126	0.11
EOU -> SS	0.171	0.995	0.125	0.19
FT -> PERF	0.018	0.39	0.843	0.178
FT -> SS	0.132	0.104	0.202	0.208
SE -> PERF	0.085	0.953	0.386	0.193
SE -> SS	0.326	0.529	0.1	0.942
SS -> PERF	0.522	0.134	0.12	0.269

Table 6 : Measurement of Unobserved Heterogeneity using POS and MGA

Source : Own Calculations

Non-Linearity

The Non-Linearity in the structural model was measured through guidelines provided by Svennson (2018). We ran Ramsey's test for the latent variable extracted through PLS_SEM algorithm. We found that for all the Non-Linear relationship the F value and p-value is above the threshold value of 0.05 (Table 7). We therefore conclude that there is no non-linearity issues in our model.

Non-linear relationship	Co-efficient	p-value	f ²	Ramsey's RESET			
FT*FT->SS	0.023	0.41	0.002				
SE*SE->SS	0.018	0.445	001				
CM*CM->SS	0.004	0.894	0.000	F= O.813051, p-value = 0.6188			
EOL*EOL->SS	0.021	0.421	0.001				
EOU*EOU->SS	0.001	0.947	0.000				
FT*FT->PERF	0.001	0.965	0.000				
CM*CM->PERF	0.029	0.282	0.003				
EOL*EOL->PERF	0.008	0.736	0.000	E = 0.58011 m volue = 0.8510			
EOU*EOU->PERF	0.000	0.999	0.000	F = 0.38911, p-value = 0.8519			
SS*SS->PERF	0.016	0.576	0.001				
SE*SE->PERF	0.031	0.15	0.004				

 Table 7: The Non-linearity assessment through Ramsey test

Source: Own Calculations

Endogeneity

To measure the Endogeneity in our study we applied the Park and Gupta (2012) Gaussian Copula approach. We first extracted the latent variable of the independent variables Course material (CM), Ease of Learning (EOL), Ease of Use (EOU), Faculty Teaching (FT) and Student's Expectations (SE) and applied the Kolmogorov-Smirnova test. We found that the p-value for all the independent variables was less than the critical level of 0.05

(p-value <0.05) (Table 8). we assumed that there is non-normality among the independent variables. We then measured the endogeneity through Gaussian Copula method. We found that all the values of all the Gaussian Copulas were above the critical value of 0.05. (p> 0.05) and (Bootstrapped value > 0.05) (Table 9). Hence values of all the Gaussian Copulas are significant. We concluded that there is no endogeneity among the variables and our structural model is robust.

Table 8:	Test of Nori	mality for I	ndependent	variables using	Kolmogorov-	Smirnova '	Test

Construct	Statistic	df	Sig.		
СМ	0.145	627	0.000		
EOL	0.071	627	0.000		
EOU	0.137	627	0.000		
FT	0.099	627	0.000		
SE	0.091	627	0.000		
a Lilliefors Significance Correction					

Table 9: Measurement of Endogene	ity Test using Gaussian Copula Method
rubic > r fileabai chilent of Eliaogene	ity rest using Suussian copula internou

Model	Indicators	Estimate	Pr(> t) > 0.05	Bootstrapped > 0.05
1	СМ	0.070748	0.0582	
	EOL	0.064698	0.0772	
	EOU	0.034332	0.1935	
	FT	0.062999	0.0382	
	SE	0.154053	1.90E-06	
	SS	0.578988	< 2e-16	
	CM_star	0.001827	0.8632	0.8576624
2	СМ	0.07426	0.0214	
	EOL	0.061365	0.1909	
	EOU	0.034047	0.1964	
	FT	0.063243	0.037	
	SE	0.154046	1.95E-06	
	SS	0.579326	< 2e-16	
	EOL_star	0.002413	0.9004	0.8585342
3	СМ	0.075422	0.0195	
	EOL	0.064057	0.0799	
	EOU	0.022588	0.4954	
	FT	0.062889	0.0378	
	SE	0.15369	1.98E-06	
	SS	0.578749	< 2e-16	
	EOU_star	0.006368	0.5681	0.8604962
4	СМ	0.073859	0.0218	
	EOL	0.063443	0.0848	
	EOU	0.034237	0.194	
	FT	0.055289	0.1429	
	SE	0.154404	1.76E-06	
	SS	0.57935	< 2e-16	
	FT_star	0.004779	0.7169	0.6683505
5	CM	0.074301	0.02113	
	EOL	0.064853	0.07603	
	EOU	0.03443	0.19191	
	FT	0.063267	0.03661	
	SE	0.146585	0.00039	
	SS	0.578634	< 2e-16	
	SE_star	0.004308	0.7649	0.7217328
6	СМ	0.074691	0.0205	

EOL	0.063366	0.0842	
EOU	0.034313	0.193	
FT	0.062774	0.0382	
SE	0.153385	2.12E-06	
SS	0.568215	< 2e-16	
SS_star	0.007582	0.6169	

Note: star is the Gaussian Copula term using for measuring the Endogeneity

Model	Indicators	Estimate	Pr(> t) > 0.05	Bootstrapped >0.05
7	СМ	0.071361	0.0704	
	EOL	0.06312	0.197	
	EOU	0.034284	0.1948	
	FT	0.062971	0.0384	
	SE	0.153977	0.00000201	
	SS	0.579103	< 2e-16	
	CM_star	0.001546	0.8981	0.894936
	EOL_star	0.001069	0.9612	0.9464085
8	CM	0.078575	0.049	
	EOL	0.064238	0.0795	
	EOU	0.020753	0.5626	
	FT	0.063236	0.0376	
	SE	0.153833	0.000002	
	SS	0.578809	<2e-16	
	CM star	-0.001657	0.8928	0.8905554
	EOU star	0.00725	0.5753	0.5578812
9	ĊM	0.0756144	0.0602	
	EOL	0.0633712	0.0855	
	EOU	0.0341179	0.1967	
	FT	0.0542061	0.1816	
	SE	0.154557	0.00000184	
	SS	0.5794555	< 2e-16	
10	CM star	-0.000997	0.9419	0.9413914
	FT star	0.0055623	0.7437	0.7112859
	ĊM	7.45E-02	0.0652	
	EOL	6.49E-02	0.0767	
	EOU	3.44E-02	0.1927	
	FT	6.33E-02	0.0376	
	SE	1.47E-01	0.0011	
	SS	5.79E-01	<2e-16	
	CM star	-9.95E-05	0.994	0.9940301
	SE star	4.39E-03	0.807	0.7837252
11	ĒM	0.077183	0.0519	
	EOL	0.063398	0.0843	
	EOU	0.034148	0.1962	
	FT	0.063028	0.0382	
	SE	0.153446	0.00000215	
	SS	0.566845	< 2e-16	
	CM star	-0.001345	0.9142	0.9153966
	SS star	0.008596	0.6302	0.5458832
12	CM	0.075261	0.02	
	EOL	0.069637	0.1557	
	EOU	0.020721	0.5528	
	FT	0.063148	0.0374	

	SE	0 15300	0.0000199	
		0.13399	5.0000177	
	FOL stor	0.003762	0.8643	0.0040377
	EOL_star	-0.003702	0.8043	0.9940377
12	<u> </u>	0.007417	0.004	0.7601457
15	EOI	0.073089	0.0227	
	EOL	0.003327	0.1704	
	EUU	0.034204	0.194	
		0.034339	0.1033	
	SE	0.134372	0.0000188	
		0.379243	< 2e-10	0.0201254
	EOL_star	-0.0014//	0.9472	0.9301354
1.4	F1_star	0.005287	0.729	0.69/3805
14	CM	0.074206	0.021593	
-	EOL	0.066744	0.189149	
	EOU	0.034483	0.191894	
	FT	0.06336	0.036799	
	SE	0.145767	0.000946	
	SS	0.578462	< 2e-16	
	EOL_star	-0.001255	0.957258	0.9437908
	SE_star	0.00484	0.782117	0.7549793
15	CM	0.074367	0.0213	
	EOL	0.070754	0.1586	
	EOU	0.034425	0.1919	
	FT	0.063039	0.0377	
	SE	0.153643	0.00000211	
	SS	0.564243	< 2e-16	
	EOL_star	-0.005195	0.8289	0.7849929
	SS_star	0.010019	0.5961	0.5139679
14	CM	0.075264	0.0201	
	EOL	0.063727	0.0837	
	EOU	0.023601	0.506	
	FT	0.060827	0.1259	
	SE	0.153768	0.00000201	
	SS	0.578842	< 2e-16	
	EOU_star	0.005831	0.6543	0.6370863
	FT_star	0.001233	0.9361	0.9271728
15	СМ	0.0754172	0.019656	
	EOL	0.0640611	0.080159	
	EOU	0.0227796	0.522785	
	FT	0.0628864	0.037937	
	SE	0.1532612	0.000439	
	SS	0.5787278	< 2e-16	
	EOU_star	0.0062735	0.626847	0.6264853
	SE_star	0.0002445	0.988296	0.9871515
16	CM	0.07545	0.0196	
	EOL	0.06336	0.0845	
	EOU	0.02563	0.4697	
	FT	0.06264	0.0388	
	SE	0.15333	0.00000218	
	SS	0.57269	< 2e-16	
	EOU_star	0.00476	0.7139	0.7125571
	SS_star	0.00428	0.8083	0.7585453
17	CM	0.074039	0.0218	
	EOL	0.063693	0.0843	
	EOU	0.034385	0.1928	
L	•	l	1 I	

	FT	0.056962	0.1538	
	SE	0.150483	0.0007	
	SS	0.579058	<2e-16	
	FT_star	0.003742	0.8087	0.7882888
	SE_star	0.002176	0.8975	0.8849686
18	СМ	0.074538	0.021	
	EOL	0.063013	0.0873	
	EOU	0.034342	0.193	
	FT	0.05985	0.1327	
	SE	0.153553	0.00000216	
	SS	0.56986	< 2e-16	
	FT_star	0.001766	0.9098	0.9034764
	SS_star	0.006499	0.717	0.6531334
19	СМ	0.07469	0.02061	
	EOL	0.06336	0.0848	
	EOU	0.03431	0.19378	
	FT	0.06277	0.03839	
	SE	0.1534	0.00061	
	SS	0.5682	< 2e-16	
	SE_star	-3.11E-05	0.99863	0.9984906
	SS_star	0.007601	0.68858	0.6182124

Model	Indicators	Estimate	Pr(> t) > 0.05	Bootstrapped >0.05
20	СМ	0.077405	0.0582	
	EOL	0.068842	0.1682	
	EOU	0.019795	0.5882	
	SE	0.154037	0.00000202	
	SS	0.578456	< 2e-16	
	FT	0.063338	0.0375	
	CM_star	-0.001113	0.9315	0.930141
	EOL_star	-0.003144	0.892	0.8525719
	EOU_star	0.007837	0.566	0.5464482
21	СМ	0.07411	0.07097	
	EOL	0.06677	0.19199	
	EOU	0.03449	0.19271	
	SE	0.1458	0.00169	
	SS	0.5785	< 2e-16	
	FT	0.06335	0.03767	
	CM_star	0.00005285	0.99688	0.9968346
	EOL_star	-0.001274	0.9576	0.9438155
	SE_star	0.004805	0.80647	0.7899805
22	СМ	0.0757637	0.0606	
	EOL	0.070286	0.1671	
	EOU	0.0343267	0.1945	
	SE	0.1536599	0.00000215	
	SS	0.5637489	< 2e-16	
	FT	0.0631616	0.038	
	CM_star	-0.0007423	0.954	0.9538849
	EOL_star	-0.0048526	0.8447	0.7971729
	SS_star	0.010419	0.6051	0.5409503
23	СМ	0.0751836	0.0679	
	EOL	0.0650113	0.1873	
	EOU	0.0341596	0.1968	

	SE	0.1546623	0.00000194	
	SS	0.5793537	< 2e-16	
	FT	0.0538192	0.193	
	CM_star	-0.0008281	0.9532	0.9523715
	EOL_star	-0.0011537	0.96	0.9460664
	FT_star	0.0058263	0.7437	0.716361
24	CM	0.07959	0.055955	
	EOL	0.064322	0.079476	
	EOU	0.021416	0.559367	
	SE	0.15104	0.000975	
	SS	0.578685	< 2e-16	
	FT	0.063332	0.037552	
	CM_star	-0.002206	0.873482	0.8721092
	EOU_star	0.006914	0.609243	0.5999427
	SE star	0.001619	0.931303	0.9256778
25	ĊM	0.081467	0.0469	
	EOL	0.063433	0.0843	
	EOU	0.023301	0.5264	
	SE	0.153458	0.00000218	
	SS	0.570475	< 2e-16	
	FT	0.063209	0.0378	
	CM star	-0.003156	0.811	0.8126918
	EOU star	0.005822	0.6716	0.6681806
	SS star	0.005925	0.7545	0.7015771
26	CM	0.080504	0.0524	
	EOL	0.063556	0.0848	
	EOU	0.021901	0.5484	
	SE	0.154129	2.01E-06	
	SS	0.579081	< 2e-16	
	FT	0.058412	0 1595	
	CM star	-0.002875	0.8398	0.8383793
	EOU star	0.006575	0.6273	0.6146837
	FT star	0.003038	0.8645	0.8470856
27	CM	0.0776825	0.05902	
	EOL	0.0634927	0.08456	
	EOU	0.0341751	0.19633	
	SE	0 1518693	0.00116	
	SS	0 5673148	< 2e-16	
	FT	0.0630877	0.03833	
	CM star -	0.0016093	0.90657	0 9082983
	SE star	0.0009266	0.96268	0.9589079
	SS star	0.0082106	0.67651	0.6084204
28	CM	0.077722	0.06471	0.0001201
20	EOL	0.063663	0.08466	
	EOU	0.034211	0.19598	
	SE	0.148957	0.00115	
	SS	0 579137	< 2e-16	
	FT	0.055527	0.17906	
	CM star	-0 002044	0.89137	0.8928995
	SE star	0.003197	0.86269	0.8469715
	FT star	0.003177	0 78123	0 7541778
29	CM	0.00400	0.0549	0.7541770
<u>_</u>)	FOL	0.062754	0.0347	
	FOU	0.002734	0.0071	
	SF	0 15383	0.0000217	
	5L	0.15505	0.0000217	

	SS	0.568655	< 2e-16	
	FT	0.057669	0.1649	
	CM_star	-0.002667	0.8521	0.8558254
		0.007516	0.6886	0.6292304
	FT_star	0.003388	0.8496	0.8356408
30	ĊM	0.075185	0.020215	
	EOL	0.07117	0.167554	
	EOU	0.021625	0.549766	
	SE	0.150924	0.000846	
	SS	0.578085	< 2e-16	
	FT	0.063196	0.037408	
	EOL star	-0.004777	0.844647	0.7957474
	EOU star	0.007004	0.602322	0.5978971
	SE star	0.001794	0.922566	0.9166348
31	CM	0.075129	0.0203	
	EOL	0.074708	0.1432	
	EOU	0.023783	0.5081	
	SE	0.153709	0.00000213	
	SS	0.567628	< 2e-16	
	FT	0.06302	0.0379	
	EOL star	-0.007981	0.7485	0.6810499
	EOU star	0.005865	0.6626	0.6555841
	SS star	0.007259	0.7159	0.6637204
32	CM	0.074904	0.021	0.0037201
32	FOL	0.070723	0.154	
	FOU	0.022115	0.541	
	SF	0.154234	0.0000202	
	SS	0 578408	< 2e-16	
	FT	0.059211	0 144	
	FOL star	_0.0039211	0.833	0 7786523
	FOU star	0.004929	0.635	0.6062285
	FT star	0.002402	0.883	0.8708437
33	CM	0.075494	0.005	0.0700137
55	FOI	0.063161	0.08605	
	FOU	0.024722	0.00005	
	SF	0.156874	0.477184	
	22	0.571437	< 2e-16	
	FT	0.062609	0.039052	
	FOLL star	0.002003	0.037032	0 7046521
	SF star	-0.002072	0.912325	0.9057569
	SE_star	0.005295	0.790315	0.7430716
3/	CM	0.005275	0.02025	0.7430710
54	FOI	0.0732377	0.02023	
	FOU	0.0030777	0.522/3	
	SE	0.0234030	0.32243	
	SE SS	0.1342327	0.00000 ≤ 2e-16	
	55 FT	0.0788717	0.13788	
	FOLL star	0.000087	0.13788	0.6646676
	SE star	0.0036755	0.00807	0.0040070
	SE_Sidi FT_stor	0.0002022	0.90027	0.9072003
35		0.001319	0.93013	0.9272033
55		0.0/4314/	0.021141	
	EOL	0.0029100	0.000901	
	EUU	0.0342997	0.194283	
		0.134//		
	22	0.3094093	 < ∠e-10 	

ISSN 2394 - 7780

Volume 11, Issue 3 (II): July – September 2024

FT	0.0595452	0.143292	
SE_star	-0.0006997	0.970465	0.9675632
SS_star	0.0068305	0.733394	0.6829219
FT_star	0.0019458	0.905206	0.8964252

Model	Indicators	Estimate	Pr(> t) > 0.05	Bootstrapped >0.05
43	СМ	0.080429	0.06086	
	EOL	0.071181	0.16962	
	EOU	0.021513	0.56468	
	SE	0.150306	0.00147	
	SS	0.578358	< 2e-16	
	FT	0.057899	0.16993	
	CM_star	-0.00301	0.8432	0.842402
	EOL_star	-0.0052	0.83575	0.7860856
	EOU_star	0.006923	0.62603	0.6166862
	SE_star	0.002441	0.90325	0.8960134
	FT_star	0.003558	0.84641	0.8277018
44	СМ	0.0749998	0.021	
	EOL	0.0745465	0.156	
	EOU	0.0240243	0.519	
	SE	0.1550053	0.001	
	SS	0.5678789	<2e-16	
	FT	0.0612364	0.14	
	EOL_star	-0.0080647	0.758	0.6956391
	EOU_star	0.0057191	0.688	0.6855024
	SE_star	-0.0006922	0.972	0.970132
	SS_star	0.0071758	0.739	0.6981899
	FT_star	0.0010776	0.95	0.9448788

Model	Indicators	Estimate	Pr(> t) > 0.05	Bootstrapped >0.05
45	EOL	0.0742067	0.1581	
	EOU	0.0228884	0.54254	
	SE	0.1530329	0.00141	
	SS	0.5673883	< 2e-16	
	FT	0.0592733	0.16211	
	CM_star	-0.003499	0.81903	0.8205613
	EOL_star	-0.0079004	0.76339	0.6996526
	EOU_star	0.0061647	0.66811	0.662675
	SE_star	0.0006312	0.97572	0.9743212
	SS_star	0.0076245	0.72455	0.6831244
	FT_star	0.0026585	0.88608	0.8754111

Source : Own Calculations

Hypothesis:

Based on the past studies we propose the following hypothesis for our independent factors:

Course Material

- H1: Course material has a positive effect on the academic performance
- H2: Course material has a positive effect on the student's satisfaction

Volume 11, Issue 3 (II): July – September 2024

Ease of learning

H3: Ease of Learning has a positive effect on the academic performance

H4: Ease of Learning has a positive effect on the student's satisfaction

Ease of Use

H5: Ease of Use has a positive effect on the academic performance

H6: Ease of Use has a positive effect on the student's satisfaction

Faculty teaching

H7: Faculty teaching has a positive effect on the academic performance

H8: Faculty teaching has a positive effect on the student's satisfaction

Student's Expectation

H9: Student's Expectation has a positive effect on the academic performance

H10: Student's Expectation has a positive effect on the student's satisfaction

Student's Satisfaction

H11: Student's Satisfaction has a positive effect on the academic performance

The path coefficients for the proposed PLS-SEM model were measured through bootstrapping with 10000 subsamples for a two – tailed test having 95 % Significance level. We found that for independent variables Ease of learning ($\beta = 0.057$, confidence interval (0.5, 0.76)), Student's expectation ($\beta = 0.173$, confidence interval (0.024, 0.327)), Student's Satisfaction ($\beta = 0.73$, confidence interval (0.575, 0.914)) and, p-values were less than the critical level of 0.05 (p < 0.05) (Table 10). We concluded that the Independent Variables Ease of learning, Student's Expectation and Student's Satisfaction has positive effect on the academic performance. For Independent variable Student's expectation ($\beta = 0.366$, confidence interval (0.217, 0.548)) p value was also less than the critical value of 0.05 (p < 0.05) (Table 10) and thus the Student's Expectation has positive impact on Students Satisfaction. For all the other path of independent variables the p-value was above the critical level 0.05 and hence were significant and therefore has no positive impact on the dependent variables Student' Satisfaction and Academic performance of the learner.

The Total effects and the specific indirect effects for the bootstrapping results was also measured. According to the results Ease of learning and Student's expectations had positive effect on Students satisfaction; Student's expectations and Student's Satisfaction had positive effect on the Academic Performance of the learners (p < 0.05) (Table 11).

For the Specific Indirect Effects Students Satisfaction acts as mediating variable for the relationship between Ease of Learning and Academic Performance and also for Course material and Academic performance since the p-value for both the indirect path is less than the critical value of 0.05. (p < 0.05) (Table 12). The R² values of the previous studies were 0.67 (Ram Gopal Singh, Varsha Singh and Arun Aggarwal (2021) and 0.78 Rd. Nazim Xiomara (2021). So, the R² value of our model (0.871) is within the acceptable limits. (Table 13).

Path		Confidence Interval	P Values	Hypothesis	Hypothesis Supported	f2
CM -> PERF	0.057	[-0.074,0.181]	0.382	H1	No	0.007
CM -> SS	0	[0.144, 0.128]	0.996	H2	No	0.000
EOL -> PERF	-0.057	[0.225, 0.085]	0.470	НЗ	No	0.004
EOL -> SS	0.633	[0.5, 0.76]	0.000	H4	Yes	0.684
EOU -> PERF	0.022	[-0.077,.0128]	0.673	H5	No	0.002
EOU -> SS	-0.023	[-0.131,0.08]	0.666	H6	No	0.001
FT -> PERF	0.061	[-0.035,0.162]	0.229	H7	No	0.009
FT -> SS	-0.031	[-0.15,0.084]	0.601	H8	No	0.002
SE -> PERF	0.173	[0.024,0.327]	0.022	H9	Yes	0.050
SE -> SS	0.366	[0.217, 0.548]	0.000	H10	Yes	0.206
SS -> PERF	0.73	[0.575, 0.914]	0.000	H11	Yes	0.713

Table 10: Bootstrapping results

Source: Own Calculations

Path	Original Sample (O)	Sample Mean (M)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	p- Values				
CM -> PERF	0.057	0.053	0.072	0.786	0.432				
CM -> SS	0	-0.003	0.07	0.005	0.996				
EOL -> PERF	0.405	0.404	0.066	6.156	0.000				
EOL -> SS	0.633	0.631	0.066	9.552	0.000				
EOU -> PERF	0.005	0.005	0.062	0.083	0.934				
EOU -> SS	-0.023	-0.024	0.054	0.427	0.670				
FT -> PERF	0.038	0.037	0.06	0.636	0.525				
FT -> SS	-0.031	-0.033	0.06	0.519	0.604				
SE -> PERF	0.44	0.446	0.083	5.326	0.000				
SE -> SS	0.366	0.373	0.084	4.337	0.000				
SS -> PERF	0.73	0.737	0.086	8.46	0.000				

Table 11: Total Effects

Source: Own Calculations

Table 12: Specific Indirect Effects

	Original Sample	Sample Mean	Standard Deviation	T Statistics	
Path	(0)	(M)	(STDEV)	(O/STDEV)	P Values
EOU -> SS ->					
PERF	-0.017	-0.018	0.04	0.419	0.675
FT -> SS ->					
PERF	-0.023	-0.025	0.045	0.508	0.612
SE -> SS ->					
PERF	0.267	0.274	0.068	3.924	0.000
EOL -> SS ->					
PERF	0.462	0.466	0.078	5.962	0.000
CM -> SS ->					
PERF	0.000	-0.001	0.052	0.005	0.996

Source: Own Calculations

Table 13: R-Square Value

Dependent Variable		R Square
Academic Performance		0.871
Student's Satisfaction		0.828

Source: Own Calculations

PLS Predict Assessment

To test the Out of Sample Predictive Power of our model we followed the guidelines provided by Shumeli, Sarstedt et al., (2019). We calculated the Q2 Predict statistic and found the value of Q2 Predict > 0. We therefore assumed that the values have predictive power. The predictive power of the values was analyzed through PLS predict in Smart PLS. The PLS Predict values were analyzed in SPSS for the Normality test using Kolmogorov – Smirnova test. The p values for all the indicators was less than 0.5 so we used MAE values for all the indicators (Table 14). The MAE values of the PLS model were less than the MAE values of the linear model for few indicators (Table 15). We assumed that our model have small to medium predictive power to predict the Academic Performance of the learner with Student's Satisfaction as a mediating variable.

Cable 14: Tests of Normality For Dependent Variables using Kolmogorov-Smirnova Test

Construct	Indicator	Statistic	Sig.
	P1	0.063	0.000
A andomia Darformanaa	P2	0.083	0.000
Academic Ferrormance	P3	0.068	0.000
	P4	0.090	0.000
	SS1	0.078	0.000
Student's Potisfaction	SS3	0.054	0.000
Student's Satisfaction	SS4	0.074	0.000
	SS2	0.07	0.000
a Lilliefors Significance Correction			

Source : Own Calculations

		PLS		LM		PLS-LM	
Construct	Indicator	MAE	Q ² _predict		MAE	Q ² _predict	MAE
	P3	0.692	0.484		0.701	0.476	-0.009
Academic	P1	0.539	0.619		0.544	0.613	-0.005
Performance	P4	0.614	0.532		0.6	0.527	0.014
	P2	0.682	0.486		0.678	0.493	0.004
	SS3	0.554	0.610		0.546	0.615	0.008
Student's Satisfaction	SS1	0.55	0.605		0.551	0.602	-0.001
Student's Satisfaction	SS2	0.624	0.560		0.621	0.566	0.003
	SS4	0.572	0.635		0.565	0.643	0.007

Table 15 : PLS_Predict Assessment Model

Source : Own Calculations

Importance – Performance Analysis (IMPA)

The importance – Performance analysis was conducted to analyze the performance and importance of the variables . The X -axis represented the perceived importance (unimportant to very important) whereas the Y-axis represented the perceived performance (low performance to high performance) Martilla an James (1977) and Hair ,et al.,(2019). IPMA in fig 2 consists of Four Quadrants: Q1 (Important Variable and Performance is excellent), Q2 (Unimportant Variable and Performance is Excellent), Q3 (Important Variable and Performance is poor) and Q4 (Unimportant Variable and Performance is poor). We ran the IPMA analysis is Smart PLS and found that Student's Expectation, Ease of Learning and Satisfaction are important variable and the performance was poor.

Table 16: IMPA

Indicator	Importance	Performances
СМ	0.113	73.452
EOL	0.375	58.065
EOU	0.048	74.343
FT	0.083	71.321
SE	0.319	67.166
SS	0.578	60.751

Source: Own Calculations

Volume 11, Issue 3 (II): July – September 2024

Fig 2: IMPA Analysis

Important

Academic Performance

Necessary Condition Analysis

The critical levels for Student's Satisfaction and Academic performance of the students were measured by conducting the Necessary Condition Analysis. The results of NCA analysis indicated that constructs Course material, Ease of Use, Faculty teaching and Student's expectation are both necessary and sufficient conditions for Student's Satisfaction effect size

 $(d \ge 0.1)$ and (p < 0.05) whereas the Ease of Learning Construct is sufficient but not a necessary condition since effect size (d < 0.1) (Table 17). Similarly for Academic Performance of the student's Course material, Ease of Use, Faculty Teaching and Student's Expectations are necessary and sufficient condition effect size $(d \ge 0.1)$ and (p < 0.05) and student's satisfaction and ease of learning are sufficient but not necessary conditions (d < 0.1) (Table 18).

We also found out the critical level required for Student's Satisfaction and the Academic Performance of the students through the NCA analysis. These levels are indicated in (Table 19) and (Table 20). To obtain a critical level of 70 % for Students Satisfaction the critical levels of course material , ease of use, ease of learning ,faculty teaching and student's expectations must be 6.9 % , 12.6 % , 33.5 % , 19.3 % and 35 % respectively and for critical level of 70 % for Academic Performance of the student's the critical levels of Student's Satisfaction , course material , ease of use, ease of learning ,faculty teaching and student's expectations must be 12.3 % , 16.5 % , 6 % ,27.2 % , 19.3 % and 32.9 % respectively .

Indicator	cr_fdh	p-value
СМ	0.146	0.000
EOL	0.095	0.000
EOU	0.167	0.000
FT	0.142	0.000
SE	0.204	0.000

Table 17: NCA Effe	ect Sizes: Stud	lent's Satisfaction
--------------------	-----------------	---------------------

Source: Own Calculations

Indicator	cr_fdh	p-value
SS	0.081	0.000
СМ	0.111	0.000
EOL	0.075	0.000
EOU	0.110	0.000
FT	0.179	0.000
SE	0.146	0.000

Table 18: NCA Effect Sizes: Academic Performance

Source: Own Calculations

Table 19: Bottlenecks: Student's Satisfaction

SS	СМ	EOL	EOU	FT	SE
0	NN	NN	NN	NN	NN
10	NN	NN	NN	12.4	NN
20	NN	NN	NN	12.4	15.8
30	NN	NN	NN	12.4	17.5
40	NN	NN	NN	19.3	23.6
50	NN	NN	NN	19.3	23.6
60	16.9	NN	33.5	19.3	35
70	16.9	12.6	33.5	19.3	35
80	16.9	12.6	46.2	19.3	35
90	66	43.6	53.3	19.3	35
100	66	43.6	53.3	19.3	35

Source: Own Calculations

Table 20: Bottlenecks: Academic Performance

PERF	SS	СМ	EOL	EOU	FT	SE
0	NN	NN	NN	NN	NN	NN
10	NN	NN	NN	NN	11.7	NN
20	NN	NN	NN	NN	11.7	NN
30	NN	16.5	NN	NN	12.4	NN
40	NN	16.5	NN	NN	12.4	NN
50	NN	16.5	NN	NN	12.4	17.5
60	NN	16.5	6	27.2	19.3	32.9
70	12.3	16.5	6	27.2	19.3	32.9
80	25.3	16.9	25	27.2	32.2	35
90	44.4	16.9	31	33.5	36.5	35
100	44.4	50.1	43.6	54.3	36.5	35

Source: Own Calculations

Contribution

Our study has contributed that the student's satisfaction act as important mediating variable for the improving the academic performance of the ungraduated learners. We also found that the students' expectation about e-learning had positive impact on both the student's satisfaction and academic performance.

Our Proposed PLS-Predict model has a medium predictive power for analyzing the effect of independent variables like Course of material, Ease of Use, Ease of learning, Faculty teaching and Student's Expectation with Student's satisfaction as a mediating variable on the Academic Performance of the students.

Very few studies have analyzed the combined effect of PLS-SEM and NCA analysis. Through the combined analysis we found that Course of material, Ease of Use, Ease of learning, Faculty teaching and Student's

ISSN 2394 - 7780

Volume 11, Issue 3 (II): July – September 2024

Expectation are necessary and sufficient factors for the Academic Performance of the learners. We also found out the critical level of independent variables required for the having 70 %, 80 %, 90 % and 100 % Student's satisfaction and Academic performance through bottleneck analysis.

We also found the important and performing variables for improving the academic performance of the learners through IMPA analysis. Student's Expectation, Ease of Learning and Satisfaction are important and performing variables whereas Ease of Use, Course material and Faculty teaching were important but were not performing.

FURTHER SCOPE OF THE STUDIES:

Our study has many limitations. The study was confined to the primary data collected from the undergraduate learners of University of Mumbai. The sample size of the research studies was 627. Future studies of Online learning can be conducted through Multigroup analysis at All India level with a large sample size and anchor based measurement of Independent variables and dependent variables instead of attribute measurement.

CONCLUSION

The independent factors course material, ease of use, ease of learning, faculty teaching, student's perception are necessary and sufficient factors for predicting the effect on the academic performance of the learners. Course material should be updated and made easy and also the ease of use of the Online learning platforms for improving the Academic performance of the learners. The faculty teaching for Online learning has to be improved to have a positive and significant effect on the academic performance of the learners.

REFERENCES

Asaad Mubarak Sharee Mohammed, Nissreen Osman Ahmed & Olga Hassan Mohammed, Study on the Impact of Online Learning on Students' Academic Performance, Volume 3 Issue 2, *Asian Journal of Multidisciplinary Research and Review*, 167-183.

Balakamakshi T Y , R Savithri (2021) ,Effect of E-learning on Student's Academic Performance at College Level , PalArch's Journal of Archaeology of Egypt / Egyptology, 18(1), 4690-4694

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), *Modern methods for business research* (pp. 295–358). Mahwah, NJ: Erlbaum.

Dul, J. (2016) "Necessary Condition Analysis (NCA): Logic and Methodology of 'Necessary but Not Sufficient' Causality." Organizational Research Methods 19(1), 10-52; Dul, J. (2020) "Conducting Necessary Condition Analysis" *SAGE Publications* ISBN: 9781526460141; Dul, J., van der Laan, E.

Elkins, R., & McDade, R. (2021). Student Perception of Online Learning Experiences Associated with COVID-19. *Research Directs in Health Sciences*, *1*(1).

Franke, George & Sarstedt, Marko. (2018). Heuristics versus statistics in discriminant validity testing: A comparison of four procedures. Internet Research. 29.

Hair JF, Ringle CM, Gudergan SP, et al. (2018a) Partial least squares structural equation modeling-based

discrete choice modeling: an illustration in modeling retailer choice. Business Research 1-28

Hair JF, Ringle CM, Gudergan SP, et al. (2018a) Partial least squares structural equation modeling-based

discrete choice modeling: an illustration in modeling retailer choice. Business Research 1–28

Hair JF, Ringle CM, Gudergan SP, et al. (2018a) Partial least squares structural equation modeling-based

discrete choice modeling: an illustration in modeling retailer choice. Business Research 1-28

Hair JF, Ringle CM, Gudergan SP, et al. (2018a) Partial least squares structural equation modeling-based

discrete choice modeling: an illustration in modeling retailer choice. Business Research 1–28

Gopal, R., Singh, V. & Aggarwal, A. Impact of online classes on the satisfaction and performance of students during the pandemic period of COVID 19. Educ Inf Technol 26, 6923–6947 (2021).

Hair JF, Ringle CM, Gudergan SP, et al. (2018a) Partial least squares structural equation modelingbaseddiscrete choice modeling: an illustration in modeling retailer choice. Business Research 1–28

Hair, J. F., Binz Astrachan, C., Moisescu, O. I., Radomir, L., Sarstedt, M., Vaithilingam, S., & Ringle, C. M. (2020). Executing and interpreting applications of PLS-SEM: Updates for family business researchers. *Journal of Family Business Strategy*, *12*(3), 100392.

Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., Ray, S. (2021). An Introduction to Structural Equation Modeling. In: Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion: Business. Springer, Cham.

Hasnan Baber, Journal of Education and e-Learning Research Vol. 7, No. 3, 285-292, 2020 ISSN(E) 2410-9991 / ISSN(P) 2518-0169

Kock, Ned. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration. 11.

Liu, Y., Yu, C. and Damberg, S. (2022), "Exploring the drivers and consequences of the "awe" emotion in outdoor sports – a study using the latest partial least squares structural equation modeling technique and necessary condition analysis", *International Journal of Sports Marketing and Sponsorship*, Vol. 23 No. 2, pp. 278-294.

Marko Sarstedt, Christian Ringle, Donna Smith, Russell Reams and Joseph F. Hair, Journal of Family Business Strategy, 2014, vol. 5, issue 1, 105-115

Marko Sarstedt, Christian M. Ringle, Joseph F. Hair, Partial Least Squares Structural Equation Modeling, Handbook of Market Research, 2020, ISBN : 978-3-319-05542-8

Nur Ainna Ramli & Hengky Latan & Gilbert V. Nartea, 2018. "Why Should PLS-SEM Be Used Rather Than Regression? Evidence from the Capital Structure Perspective," International Series in Operations Research & Management Science, in: Necmi K. Avkiran & Christian M. Ringle (ed.), Partial Least Squares Structural Equation Modeling, chapter 0, pages 171-209, Springer.

Park, Sungho & Gupta, Sachin. (2012). Handling Endogenous Regressors by Joint Estimation Using Copulas. Marketing Science.

Sarstedt, Marko & Ringle, Christian & Hwa, Cheah & Ting, Hiram & Radomir, Lacramioara & Moisescu, Ovidiu. (2020). Structural model robustness checks in PLS-SEM. Tourism Economics. 26. 531–554.

Shmueli, G., Sarstedt, M., Hair, J.F., Cheah, J.-H., Ting, H., Vaithilingam, S. and Ringle, C.M. (2019), "Predictive model assessment in PLS-SEM: guidelines for using PLSpredict", *European Journal of Marketing*, Vol. 53 No. 11, pp. 2322-2347.

Podsakoff, Philip & MacKenzie, Scott & Lee, J.-Y & Podsakoff, N. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology. 88. 879-903.