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ABSTRACT 
In this paper, we establish an optimal replenishment policy for inventory systems involving fixed lifetime items 

under partial backlogging. The model incorporates key assumptions such as a constant rate of decay of 

product deterioration, a finite lifetime of the product, time-varying demand and partial backordering during the 
stockouts. The mathematically formulations of the inventory dynamics are presented, and appropriate notations 

are developed. The problem has been formulated mathematically in the form of a mathematical model to 

minimize total inventory costs including ordering, holding, shortage, and deterioration costs. A classical 
optimization method is used to develop an analytical solution algorithm to determine the optimum cycle length 

and the order quantity. Numerical example based on real-world inventory problem is presented to verify the 

model and to illustrate its practical applicability. Further, sensitivity analysis is conducted to show the effects 

of the important parameters, such as backordering rate, deterioration rate and demand variance, on the 
optimal solutions and the total cost. The results suggest that both partial backlogging and product life are 

important factors affecting replenishment policies. This model would be of great value to inventory managers in 

charge of perishable or time sensitive products in their efforts to balance the trade-off between cost and level of 
service. 

Keywords:Replenishment Policy, Lifetime Inventory, Partial Backlogging, Inventory Optimization, 

Deteriorating Items. 

1. INTRODUCTION 
Inventory management is at the critical point of operation efficiency and customer service and the trade-off 

between stock-level and holding costs may be the difference between profits and losses for a company. The 

optimal replenishment of lifetime inventory systems with partial backlogging provides a substantial progress in 
this area and is also widely found in today's source managing practice. This method is designed to accurately 

model the intricate dynamics that exist with a finite lifetimes for products – be it technological obsolescence, 

fashion trends, regulatory changes, or natural life cycles of products – while also accounting for the fact that 
customers are not willing to wait for out-of-stock items indefinitely. The lifetime inventory concept imposes a 

time limit which changes the classical inventory control paradigms. Unlike products in a perpetual inventory 

system, which theoretically do not lose value over time, products in lifetime inventory are recognized as only 

having a finite period of time in which they can maintain market value. This could be in a shape of a 
smartphone that gets obsoleted to the release of new models in the market, seasonal fashion that goes out of 

style after some time, or pharmaceutical products that are close to their expiration of the respective patents. The 

addition of partial backlogging further complicates the model in that customer patience is not yes-or-no 
proposition but rather products are delivered with some degree of delay. In the case of stockouts, some 

customers defer purchase; but others switch to other brands, and behaviour of the customer is dependent on the 

degree of product uniqueness, urgency of need, price sensitivity, availability of alternatives, etc. 

The formulation of the optimal replenishment policies for such systems in terms of the mathematical framework 

can be complicated by multiple competing goals. It has to satisfy two objectives: the first one is to minimize the 

total cost function, involving holding costs, ordering costs, shortage costs and opportunity costs due to lost 

sales. In lifetime inventory systems, the holding cost factor is especially significant due to the fact that products 
lose value and/or may even become useless with the passing of time. What shortage costs need to factor in, by 

contrast, is the immediate lost revenue from customers that won‘t wait, plus the less immediate but equally 

important damage to the customer relationship from chronic stockouts. The partial backlogging feature brings in 
a random factor which makes the optimization problem much more complicated. The proportion of demand 

that is back orderable in the event of stockouts— typically also a function of waiting time—must be carefully 

estimated from historical and primary data and customer research and analysis. This waiting/ backlogging 

dynamic might be static for some products, but temporal for others (like fashion products, or technology goods 
is, where customers lose their willingness to wait too quickly). 
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Sophisticated analytical tools are used to obtain optimal policies under this setting. Dynamic programming 

methods are used to establish state-dependent order policies, while stochastic optimization techniques consider 
the demand uncertainty and varying lead times. The policies developed can be complex, including state-

dependent (s, S) and state-dependent lead time (s, S, T) that establish how the replenishment decision and the 

quantity of the order are determined by the physical and economical circumstances, such as promotion, price 

changes and market conditions. In turn, these policies need to be designed in such a way that their 
corresponding mechanisms are able to adjust to new demand patterns during the product life-cycle, from the 

product introduction through the growth, maturity, and decline. There is a practical need to implement such 

policies with strong information systems that can monitor the inventory system in terms of multiple 
performance variables in real-time and to react to changes regarding these performances, such as current 

inventory level, outstanding orders, backlogged demand and the life-span of the product. Contemporary 

solutions frequently incorporate machine learning models to iteratively update demand predictions and 
backlogging factors as more data becomes available. This adaptive method is especially useful for businesses in 

dynamic markets where the customer requirements and competitive backdrop are constantly changing. Risk 

management concerns are critical in the study of optimal replenishment policies for lifetime inventory with 

partial backlogging. Managers must trade off obsolescence risk versus the risk of stockouts, depending on the 
product stage of life. At the beginning of the life cycle, where demand uncertainty is the highest but maximum 

remaining life of the product, policies could have more to favour increased Their service levels to gain market 

share. As the product moves closer to the obsolescence date, the optimal policy usually become more 
conservative due to the fact that order quantity tends to decrease in order to lower the obsolete inventory risk. 

The economic consequences of using optimal replenishment policies in this setting can be significant. 

Organizations that can appropriately handle the complexity of lifetime inventory planning with partial 

backlogging frequently attain substantial enhancements to working capital efficiency, customer service levels, 
and bottom-line profitability. The capacity to dynamically adjust inventory levels as a function of the product 

life remaining and of the customer backlog behavior allows to take competitive advantages, particularly in 

industries with high rates of turnover and sophisticated customers. The environmental sustainability dimension 
of sachet-friendly policy making would be particularly deserving of emphasis in the present business milieu. To 

minimize the waste of disposing obsolete inventory, automotive suppliers need to better match supply to 

demand at different times in the product's life cycle, also known as optimal replenishment policies. This is in 
keeping with increased consumer and regulatory demands for greener business, adding to better financial 

performance through lower write-offs and disposal costs. In the future, artificial intelligence, real-time data 

analytics, and integrated supply chain platforms will play a role for the development of the optimal 

replenishment policy for lifetime inventory with partial backlogging. These advances are likely to deliver even 
more powerful ways to balance the difficult trade-offs involved in handling products with finite lifetimes in 

markets with short customer patience. With supply chains becoming more and more global and networked, 

effective rollout of these advanced inventory management techniques will continue to be a key factor in 
competitive success across many industries. 

2. LITERATURE REVIEW 

Inventory systems for deteriorating items, and particularly those with fixed or deterministic lifetimes, have 
received a great deal of attention in the past few decades on account of their applications in sectors such as 

food, pharmaceuticals and electronics (Ghare and Schrader, 1963; Goyal and Giri, 2001). In these settings, 

products deteriorate with time or become obsolescent creating difficult problems in determining the reordering 

schedule. Partial backlogging (i.e., when a fraction of demand during a stockout is back-ordered and met at a 
later time) complicates the inventory decisions (Wee, 1993; Sana, 2010). Earlier works have been mainly 

devoted to profiling deterioration behavior through exponential (or Weibull) distribution (Covert &Philip,1973; 

Philip,1974), with recent studies that involve elements of pricing policies, payment delays, and credit terms 
(Sarkar, 2012; Wu et al., 2014). Modern models seek to provide optimal replenishment policies by trade-off 

between cost of deterioration, cost of shortage and cost of replenishment in time-varying demand situations. 

Classical and Foundational Models of Deteriorating Inventory 

On the basic work of Ghare and Schrader (1963), an inventory system of exponentially decaying type has been 
introduced by Covert and Philip (1973) and Philip (1974) under Weibull deterioration. Dave and Patel (1981) 

developed time-proportional demand in deteriorating systems for the understanding of demand-time 

relationship. And Wee (1993) introduced the reality with partial backordering in lot size models for production. 
Goyal and Giri (2001) provided an extensive survey of deteriorating inventory models, described 

developments, and suggested areas of possible future research. 
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Contemporary Strategies for Fixed Lifetime Inventory and Partial Backlogging 

Newer models attempt to capture more dynamic environment to which operations are exposed, such as 
fluctuating demand, finite product lives, and financial considerations. Sana (2010) proposed an integrated 

model with time-dependent deteriorating and optimization of selling price under partial backlogging. Sarkar 

investigated EOQ models with payment policy and time-dependent demand. Sett, Sarkar and Goswami (2012) 

studied control of deteriorating items for two warehouses with increasing demand. Wu et al. (2014) and Sarkar, 
Saren and Cárdenas-Barrón (2015); incorporated credit policy and expiration date while dealing with 

replenishment planning. On the other hand, Sarkar (2016) proposed coordination mechanisms involving 

discounted policies and variable backorder rates, which enhance decision making with respect to fixed lifetime 
inventory in a supply chain. 

3. Assumptions and Notations 

The design of an appropriate replenishment policy for lifetime inventory systems with partial backlogging calls 
for the formulation of a general, but mathematically tractable system model that accounts for the fundamental 

understanding about managing life-cycle inventory items in reality. This model considers situations in which 

products have finite market life and customers have different levels of tolerance in waiting under stockout. The 

model is aware that at present inventories work under uncertain environments in which product decay, changing 
demands as well as stochastic customer behaviour regarding backorders are included. To develop a 

mathematically convenient but still meaningful model, several important assumptions underlie the theoretical 

framework. These assumptions are necessary in order to strike the balance between mathematical rigor on one 
hand and realistic representations of inventory dynamics on the other.The first fundamental assumption posits 

that demand follows a time-dependent linear function D(t) = a + bt, where 'a' represents the base demand level 

and 'b' captures the growth rate over time. The parameters satisfy a > 0 and 0 ≤ b < 1, ensuring positive initial 

demand with controlled growth. This formulation effectively models products experiencing steady market 
expansion, such as emerging technologies or seasonal items during their active selling period. The constraint on 

parameter 'b' prevents unrealistic exponential growth while allowing for gradual demand increases typical of 

many product lifecycles. 

The second assumption introduces the concept of partial backlogging through a sophisticated time-varying 

function. When inventory is depleted, only a fraction of demand can be backordered, following the expression 

1/(1 + β(T - t)), where β is a positive parameter not exceeding 1. This nice formula correctly corresponds to 
vanishing customers‘ patience with increasing waiting times. β is a sensitivity factor – smaller β stands for: 

customers are more tolerant to waiting for the stock; large β indicates an opposite tendency: when the stock 

can‘t be found, customers tend to change their choices very fast. The third supposition is that the decay of 

products usually occurs as a function of time rather than proportional to time. This mirrors the way things 
actually work: be it for food items in supermarkets or technology products that become obsolete quickly. 

Through time dependent degradation, the model is able to represent the accelerating decrease in value which is 

suffered by many product types towards the end of product life. The fourth assumption of a lead time equal to 
zero also simplifies the mathematical treatment and permits attention to be concentrated on the essential trade-

offs between inventory holding costs, shortage costs, and spoilage loss. This assumption may be relaxed in 

extensions, and enables to focus on the key dynamics of lifetime inventory management with partial 
backlogging. 

The notation system establishes a comprehensive framework for mathematical modeling: 

 I(t) represent inventory level at time t 

 θ(t) = θt defines the time-dependent deterioration rate, where 0 ≤ θ ≤ 1 

 A denotes ordering cost per order 

 C represents purchasing cost per unit 

 P indicates selling price per unit 

 Q signifies initial inventory level after fulfilling backorders 

 C₀ captures holding cost for inventory throughout its lifetime 

 t₁ marks the time when shortages begin 

 Cs represents shortage cost for backordered items per unit per time 

 Cl denotes lost sales cost per unit per time 
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 Cd indicates deterioration cost per unit 

 τ₀ represents the lifetime threshold after which deterioration starts 

 T defines the inventory cycle length 

 Z(T, t₁) represents total cost function dependent on cycle length and shortage initiation time 

This notation permits a rigorous mathematical expression of the optimization problem. The inventory level 

function I(t) evolves with demand and deterioration, and a number of cost parameters account for the financial 

consequences of inventory decisions. The time threshold τ₀ is inspired by the fact that for many products, their 

full value is preserved in the beginning but is depleted in the later period, which is also motivated by industrial 

applications such as electronics and prescription drugs. The composite cost function Z(T, t₁) leads to a two 

dimensional optimization problem in the determination of the optimal cycle length T and the time t₁ at which to 

start the cut. This latter feature highlights the intertwined nature of order frequency decisions with holding 

periods and strategic decisions on when to permit stockouts. 

Together, these assumptions and notations yield a rigorous analytical framework that strikes a fine balance 
among the mathematical manipulability and practical relevance. The model adds to understanding of inventory 

management under finitely-lived products and time-varying customer patience and contains time-varying 

demand, complex partial backordering, and true ruin discount functions. The resulting optimization model 
supports the derivation of policies that reduce cost when there is broad application domain buy-in and non-

infinite MBPs. This mathematical structure enables the use of more sophisticated analysis methods, such as 

dynamic programming and stochastic optimization, to obtain optimal replenishment policies. The structure of 

the model makes it possible to conduct sensitivity analysis and scenario planning, which assists managers to 
estimate how changes in various market conditions or customer behavior can affect the optimal inventory 

policies. By applying the model in a diligent manner, firms can create better mechanisms for dealing with a less 

lifespan-limited product, but in a market with a volatile demand and it depends on the consumer‘s willingness to 
carry a backorder. 

4. Formulation of the Model 

This mathematical model addresses a critical challenge in inventory management: how to optimize inventory 
levels for products that have a limited lifetime and experience demand that changes linearly over time. This 

scenario is particularly relevant for perishable goods, seasonal products, or technology items that become 

obsolete.The model operates on a single-cycle basis where the inventory starts at a maximum level Q and 

depletes over time. The depletion occurs in distinct phases, each governed by different dynamics. In the initial 

phase (0 to θ₀), inventory decreases solely due to customer demand, which follows a linear trend represented by 

(a + bt), where 'a' is the base demand and 'b' represents the rate of change in demand over time. This phase is 

mathematically described by equation (3.1), which shows the rate of inventory change as dI(t)/dt = -(a + bt).The 

second phase (θ₀ to t₁) introduces product deterioration into the equation. During this period, inventory depletes 

not only due to demand but also due to spoilage or obsolescence. The deterioration rate θ(t) can vary with time, 

reflecting how products may deteriorate faster as they age. This dual depletion mechanism, captured in equation 

(3.2) as dI(t)/dt = -θ(t)I(t) - (a + bt), accelerates the inventory reduction until it reaches zero at time t₁. 

Once inventory is exhausted, the system enters a shortage phase (t₁ to T). Rather than losing all unfulfilled 

demand, the model incorporates partial backlogging. The backlogging rate δ/(1+δ(T-t)) is time-dependent, 

reflecting the reality that customers are more willing to wait when the expected waiting time is shorter. This 
sophisticated approach, represented in equation (3.3), captures customer behavior more accurately than simple 

all-or-nothing backlogging models.The boundary conditions specified in equation (3.4) state that inventory 

starts at Q units at time t=0 and reaches zero at time t=t₁. Solving the differential equations (3.1)-(3.3) yields 

explicit formulas for inventory levels at any time t, as shown in equations (3.5)-(3.7). These solutions enable 
precise calculation of inventory position throughout the cycle.The initial inventory quantity Q is derived in 

equation (3.8) by ensuring continuity at the transition point θ₀. This expression incorporates the effects of linear 

demand and deterioration to determine the optimal starting inventory level. 

The cost structure comprehensively accounts for all aspects of inventory management: 

1. Holding costs (Cₕ), calculated in equation (3.9), include both fixed storage costs and variable costs that may 

increase with storage duration. The formula accounts for different cost rates in different phases of the 

inventory cycle. 
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2. Deterioration costs (Cᴅ), given in equation (3.10), capture the direct loss from spoiled products. This cost is 

proportional to the amount of inventory that deteriorates during the second phase. 

3. Shortage costs (Cₛ), expressed in equation (3.11), reflect the penalties associated with not meeting demand 

immediately. The formula considers both the magnitude and duration of shortages. 

4. Lost sales costs (Cₗ), calculated in equation (3.12), account for permanently lost business opportunities due 

to customers who choose not to wait. 

The optimization problem seeks to determine two critical decision variables: the optimal cycle length T and the 

time t₁ when inventory reaches zero. These decisions must balance multiple trade-offs. The total cost function 

Z(T,t₁), presented in equation (3.13), aggregates all cost components and is expressed per unit time to facilitate 
comparison across different cycle lengths.This model is particularly valuable for businesses dealing with 

complex inventory situations where multiple factors influence optimal decisions. By incorporating deterioration, 

time-varying demand, and partial backlogging, it provides a more realistic framework than simpler inventory 

models. The analytical solutions enable managers to make data-driven decisions about ordering quantities and 
timing, ultimately minimizing total costs while maintaining acceptable service levels.The model's flexibility 

allows for adaptation to various business contexts by adjusting parameters such as the deterioration rate 

function, demand trend coefficients, and backlogging behavior. This makes it applicable across industries 
ranging from food retail to electronics manufacturing, wherever products face limited lifetimes and changing 

demand patterns. 

Model Formulation 
A mathematical model for life time products with linear trend demand is developed. The cycle begins with a 

primary level of inventory i.e., Iₘₐₓ units. The level of inventory decreases more quickly in initial time at t=0 to 

t=θ₀ due to both demand and deterioration, until it arrives at zero level at time t=t₁. Now shortages occurred at 

time (t₁,T) which is partly backordered with time dependent backlogging rate. At the ending of the cycle, the 
stock attained a highest level of shortage S and then new order is put to finish the backlog. The change in the 

inventory level I(t) with respect to point in time can be inscribed as given: 

(3.1) 

A simple linear decay rate over time due to a+bt (where a,b>0). 

This represents an initial period with no replenishment or intervention. 

(3.2) 

Here, θ(t)acts like a decay or damping function, modeling control (e.g., treatment, replenishment, etc.) starting 

from time μ0. 

(3.3) 

A more refined time-dependent decay, diminishing over time due to the term 1+α(T−t).This could represent 
recovery or efficiency gain over time. 

Boundary Conditions 

(3.4) 

Target (e.g., depleted inventory, zero infections) at time t1. 

Explanation of equation (3.1) to (3.3) are specified by 

(3.5) 

This is the integrated form of (3.1), showing how I(t) declines over time due to linear and quadratic terms. 

(3.6) 
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(3.7) 

From (3.5) and (3.6), Q can be obtained as 

(3.8) 

The total holding cost CH for the duration of the period (0,T) is given by 

 

Then, we have: 
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The total cost of deterioration CD is given by 

(3.10) 

The total shortage costCSfor the duration of the period (t1, T) is given by 
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(3.11) 

Lastly, total cost of lost sales CL for the duration of the period (t1, T) is given by 

(3.12) 

The total cost of the retailer per unit time 1 Z(T,t ) can be calculated as 

 

 

 

 

 

(3.13) 

5. SOLUTION PROCEDURE 

The solution procedure looks for the best values of T and t₁ that minimize the cost function Z(T, t₁). The 

objective function is a two-variable one, with T the total cycle time, and t₁, some instant time within the cycle. 

As a start, T is fixed and the behaviour of the cost function with respect to a single virtue t₁ is examined. We 

obtain the best t₁ for a given T by cal- culus-based optimization methods. This consists in differentiating the 

cost function Z(T,t₁) with respect to t₁, equation (3.14) that gives the velocity of the cost function. The obtained 

expression contains several costs depending on different orders in t₁: linear, quadratic and cubic ones.The 

second derivative with respect to t₁ given in component (3.15) is then evaluated and used to check if the critical 

point attained in the first-order condition is a minimum. In fact, this derivative is used to test for the convexity 

of the cost function and to determine that the solution corresponds to a point that minimizes the cost and not a 
maximum or saddle point. The terms in the two derivatives can be allocated as cost parameters (C0, C1, C2, Ca, 

Ci, and Cs) and system parameters (a, b, α, β, θ) corresponding to meaning in the system as different cost 

elements and operation behavior of system. As the derivatives are complicated (since they contain terms of 

different powers of t₁ and products between T and t₁) this also exhibits the complexity of the optimization 

problem and the competing factors involved in solving it. 
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(3.14) 

And 

 

 

 

(3.15) 

6. NUMERICAL ILLUSTRATION WITH REAL PROBLEM 

This numerical example presents the practical use of an inventory management model for firm which deals with 
non-perishable dried food products such as a pasta and rice. The case considered provides a complete setting 

for which the decision maker at the company should determine the optimal stock control decisions, taking into 

account such various cost items and operational restrictions. The company works with a structure of costs of 

pasta being bought at Rs20 and sold at Rs30, resulting in a profit of Rs10 per unit. But there are different types 
of annual costs influencing the profitability: holding the stock costs Rs 3 per unit, lost sales caused by stockouts 

cost Rs 4 per unit, deteriorating the products costs Rs 10 per unit and the shortage penalties are Rs 12 per unit. 

The rate at which product deteriorates is known to follow a particular pattern, at 0.02 units per time period and 
that product has a shelf life of 7 days before it begins to deteriorate. For each order, it costs me Rs 1,000. 

The demand for these goods is dictated by a mathematical formulation given by a=100, b=0.1, where a>0 and b 

byte19=0 and 1. The firm also takes into account partial backlogging (i.e., customers are willing to wait some 

of their orders whenever there is no stock), which is measured by a parameter α=0.10 units. The supply chain 
has a lead of zero, i.e., orders are available instantly after placing it. Some of the main results derived from the 

optimization using the inventory model are as follows. The best inventory cycle length is 17.72 days, and new 

orders should be placed every 18 days. Shortages are observed beginning on day 15 of each cycle, whereby the 
firm apparently opts for planned stockouts for the last 2.72 days of each cycle. The opening stock position after 

all backlog were being satisfied will be 2,137.66 units, which is the most economical order quantity. This 

approach leads to a minimum combined cost of Rs 1,920.43 for a new unit. This type of realistic advice is 
given to the inventory manager, based on mixed objectives of cost minimization and minimum service level for 

particular dry-food-product values and customer behavior pattern. 

7. SENSITIVITY ANALYSIS 

This subsection reports the sensitivity analysis carried out to investigate the impact of the variances of model 
parameters on the optimal solution. The variation consists in the progressive changing of each parameter by 

±20% and ±40%, keeping the others constant at their original values. Such one-by-one technique provides for a 
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restricted investigation of the model's behaviour with respect to the individual parameters. The analysis is 

aggregative in the sense that it records 20% upward and downward variations on parameters to obtain changes 
in optimal inventory cycle length, timing of shortage, initial inventory and total cost. The results are reported in 

the following tables in order to show the sensitivity of the model in relation to the changes of important 

parameters, such as the demand coefficients, the rate of deterioration, several type of costs and backlogging 

parameters. This provides the inventory manager with the important sensitivity analysis of what parameters 
most impacts the optimal decision, and helps to check the robustness of the proposed solution. Knowledge of 

these sensitivities enables managers to then target their efforts on performing accurate estimates of those 

fundamental parameters, and it offers guidance on how changes in operations can potentially impact 
performance and cost of inventory. 

Table 1: Sensitivity analysis for demand parameter b 

% Change T* t1*
 

Q
* 

Z
*
(T

* 
,t1

*
) 

-40 17.7268 15 2130.06 1910.91 

-20 17.7244 15 2133.86 1915.67 

0 17.7219 15 2137.66 1920.43 

+20 17.7195 15 2141.46 1925.19 

+40 17.7171 15 2145.26 1929.95 

In Table 1 for demand parameter b, the results illustrate a consistent system response for different percentage 

variations. The optimization results are robust as the parameter b changes from -40% to +40%. The value of 

cycle time T* decreases insignificantly from 17.7268 to 17.7171 and has an inverse tendency to parameter b; 

however, the value of replenishment period t1* that is 15 in all scenarios is optimal, independent of fluctuations 
in demand parameter. The best order quantity Q* increases from 2130.06 to 2145.26 units as b increases, and 

they are also in a positive correlation. In a similar manner, steady increases in the objective function Z(T, t1) 

occur as demand variable b increases from 1910.91 to 1929.95, corresponding to an approximate 1% increase 
with every 20% change in b. The slow rate of the response indicates that the system is not very sensitive to 

moderate increases in demand parameter b, as all performance metrics have linear response. Stability of these 

results in Table 1 indicates that the model is implemented in a sensible way since the little error of parameter b 
estimation caused by estimation model errors would not have a big effect on the whole system performance. 

 
Figure 1 T* Optimal Cycle Time 

Looking at Figure 1, this graph shows the relationship between changing parameter b (x-axis, -40% to +40%) 

and the optimal cycle time T* (y-axis, ranging from approximately 17.715 to 17.727). As parameter b increases, 

the optimal cycle time T* gradually decreases, indicating an inverse relationship between these variables. 

 
Figure 2 Q* Optimal Order Quantity 
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Figure 2 illustrates the positive correlation between parameter b changes (x-axis, -40% to +40%) and optimal 

order quantity Q* (y-axis, 2130-2145 units). As parameter b increases, Q* rises steadily in a nearly linear 
fashion, suggesting that higher values of parameter b require larger optimal order quantities. 

 
Figure 3 Z(T*, t1*) Objective Function Value 

Figure 3 displays the relationship between parameter b changes (x-axis, -40% to +40%) and the objective 

function value Z(T*, t1*) (y-axis, 1910-1930 units). As parameter b increases, the objective function value rises 
steadily, showing a positive correlation. This suggests higher parameter b values result in increased costs or 

optimization values. 

Table 2: Sensitivity analysis for lifetime parameter μ0 

%Change T* t*1 
Q

* 
Z

* 
(T

* 
,t1

* 
) 

-40 18.9940 15 2431.79 2616.33 

-20 18.3755 15 2292.30 2291.17 

0 17.7219 15 2137.66 1920.43 

+20 17.0623 15 1978.95 1514.85 

+40 16.4322 15 1827.27 1094.59 

Now present sensitivity analysis in which we obtain by Table 2 with the lifetime parameter μ0, which the system 

is sensitive toward positive or negative percentage changes. When μ0 takes the range from −40% to +40%, all 

optimal values fluctuate greatly which suggests the parameter is very sensitive to these optimal values. T* 
decreased monotonically from 18.9940 to 16.4322, and presented a good negative correlation with μ0. The 

duration t1* of replenishment is unchanged in all simulations with t1* = 15, indicating that this parameter is not 

affected by changes in the lifetime parameter. Optimal order quantity Q* reduces significantly from 2431.79 to 
1827.27 in the case of increasing μ0, this being a clear inverse relation. In particular, the objective function 

Z(T, t1) exhibits the most significant sensitivity, dropping from 2616.33 to 1094.59, which is reduced by about 

58% in the overall range. Note that this is ∼ 29% reduction per 20% increase in μ0, emphasizing the necessity 

for a precise determination of the lifetime parameters. The non-linear pattern of response in Table 2, especially 
in the objective function values, indicates that system performance is very sensitive to μ 0., therefore an 

accurate estimation is essential for the optimal system operation. 

 
Figure 4 T* Optimal Cycle Time 

Figure 4 shows the relationship between changes in parameter μ0 (x-axis, -40% to +40%) and optimal cycle 
time T* (y-axis, approximately 16.5-19.0 units). As parameter μ0 increases, T* decreases linearly, indicating 

that higher values of μ0 result in shorter optimal cycle times. 
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Figure 5 Q* Optimal Order Quantity 

Figure 5 depicts the negative correlation between parameter μ0 changes (x-axis, -40% to +40%) and optimal 

order quantity Q* (y-axis, 1800-2400 units). As parameter μ0 increases, Q* decreases linearly, suggesting that 

higher production/demand rates require smaller optimal order quantities for efficiency. 

 
Figure 6 Z(T*, t1*) Objective Function Value 

Figure 6 illustrates the inverse relationship between parameter μ0 changes (x-axis, -40% to +40%) and the 
objective function value Z(T*, t1*) (y-axis, approximately 1100-2700 units). As μ0 increases, the objective 

function value decreases linearly. The callout box highlights that at -40% change in μ0, Z(T*, t1*) equals 

2616.33, demonstrating how significantly lower μ0 values increase the objective function. 

Table 3: Sensitivity analysis for backlogging parameter α 

% Change T* T1*
 

Q
* 

Z
*
(T

* 
,t1

*
) 

-40 17.1836 15 2137.66 1947.73 

-20 17.4456 15 2137.66 19 

0 17.7219 15 2137.66 1920.43 

+20 18.0100 15 2137.66 1906.54 

+40 18.3084 15 2137.66 1892.67 

An interesting system behavior is shown in Table 3 of sensitivity analysis that is achieved by varying of 
backlogging parameter α in the range of -40% to +40%. The cycle time T) has a monotonically increasing 

dependence between 17.1836 and 18.3084 with a rise for the parameter α. It should be pointed out that the 

ordering age t1 is still constant at 15 in all cases, which means it is irrelevant to the backlogging parameter 

change. Interestingly, the economic order quantity Q* remains constant (=2137.66 units) for all changes in α, 
indicating that the determination of order size is independent of the backlogging parameters. The value of the 

objective function Z(T, t1) decreases steadily from 1947.73 to 1892.67 at an anomalous value of 19 at -20% 

change, this is likely a data recording error. Except for this outlier, the overall trend implies that high α results 
into efficient system performance (lower costs). The total sensitivity is rather low, with around 2.8% cost 

difference over the complete parameter range, which indicates that the system is only moderately robust with 

respect to a variation of backlogging parameter α. 
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Figure 7 T* Optimal Cycle Time 

Figure 7 displays the positive correlation between parameter α changes (x-axis, -40% to +40%) and optimal 

cycle time T* (y-axis, 17.0-18.3 units). As parameter α increases, T* rises steadily in a nearly linear fashion. 

This suggests that higher deterioration rates require longer optimal cycle times, possibly to balance inventory 
holding costs with other operational factors. 

 
Figure 8 Z(T*, t1*) Objective Function Value 

Figure 8 demonstrates the negative correlation between parameter α changes (x-axis, -40% to +40%) and the 
objective function value Z(T*, t1*) (y-axis, 1890-1950 units). As parameter α increases, the objective function 

value decreases linearly. This suggests that higher α values lead to lower overall costs or more optimal system 

performance, potentially indicating that the system becomes more efficient at higher deterioration rates. 

Table 4: Sensitivity analysisfor deterioration parameter θ 

%Change T * t 1* Q* Z * (T *, t1*) 

-40 16.7224 15 1887.10 1292.33 

-20 17.2138 15 2012.38 1610.94 

0 17.7219 15 2137.66 1920.43 

+20 18.2478 15 2262.94 2221.03 

+ 40 18.7924 15 2388.22 2512.94 

The sensitivity analysis of the Table 4 for deterioration parameter θ shows that much sensitivity is incorporated 

in the system following percentage changes from - 40% to + 40%. The cycle time T* increases linearly with the 
degradation stages from 16.7224 to 18.7924, which demonstrates that T* is positively related with the 

parameter of the deterioration θ. This implies that longer cycles are needed to achieve system efficiency as the 

condition becomes worse. Replenishment period t1* is the same for all scenarios at 15, so there is a seizure-

independent aspect to that timing. The optimal order quantity Q* is quite sensitive, and it increases 
monotonically between 1887.10 and 2388.22 units when θ increases. This is about a 26.5% increase over the 

entire range of parameters, noting higher rates of loss require more production to account for lost product. Most 

direct, the objective function Z(T, t1) is recorded as the most sensitive among all the characteristics in this table, 
with the full range increasing from 1292.33 to 2512.94 (the objective function Z(T, t1) increases by 94.4%). 

This is tantamount to around 23.6% cost increase per 20% increase in the deterioration parameter that 

emphasizes how important is the economical aspect of the product deterioration. The non-linear response shown 
in Table 4, especially with respect of the corresponding objective function values, indicates that the accurate 

estimation of the deterioration parameter θ is necessary for optimal inventory management since slight 

perturbations in the objective function have large cost effects for the system. 
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Figure 9 Optimal Cycle Time (T*) 

Figure 9 illustrates the positive linear relationship between parameter θ changes (x-axis, -40% to +40%) and 

optimal cycle time T* (y-axis, 16.25-18.85 units). As θ increases, T* consistently rises, suggesting that higher 
values of this parameter necessitate longer cycle times for optimal operation. The effect appears relatively 

significant, with approximately a 2.6-unit change in T* across the full range of θ variation. 

 
Figure 10 Quantity (Q) 

Figure 10 shows the positive linear relationship between parameter θ changes (x-axis, -40% to +40%) and 
quantity Q (y-axis, 1800-2400 units). As θ increases, the order quantity consistently rises, with approximately a 

600-unit increase across the full range. This suggests that higher values of θ require larger order quantities to 

maintain optimal inventory management, possibly due to changing demand or production conditions. 

 
Figure 11 Total Cost/Profit (T*, t1*) 

Figure 11 displays the positive linear relationship between parameter θ changes (x-axis, -40% to +40%) and the 
total cost/profit function Z(T*, t1*) (y-axis, 1200-2500 units). As θ increases, the total cost/profit rises steadily, 

showing a substantial impact with approximately a 1300-unit increase across the full range. This indicates that 

higher θ values significantly increase system costs or decrease profitability. 

8. OBSERVATIONS 

The paper introduces a refined mathematical model to inventory control of products having finite lives and 

partial backlogging. It addresses a challenging issue in the present inventory system whereby multiple 
conflicting factors such as holding cost, shortage cost and deterioration cost are taken into consideration, under 

the time dependent demand. The author derives an overall model, more general than traditional inventory 

models, which takes into account both the decay of the product over time and the customer's patience to wait in 
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the case of stock-out. It is, precisely for these reasons that this two-pronged approach to consider the decisions 

of production and inventory simultaneously, is apt for the industries where the products are perishable, and 
where the product fashion or technology imposes obsolescence. The model is developed using differential 

equations to account for depletion of inventory over initial (demand-only), demand plus deterioration, and 

shortage with partial backlogging periods. An advantage of the model is that it adopts clinically-based 

assumptions such as: time-varying linear demand (D(t) = a + bt) and a general form of backlog function 
representing decreasing customer patience as waiting time in the system increases. These features are more 

realistic in capturing the real market mechanism by simple models with constant parameters. The solution 

method highlights the search for optimal values of cycle length (T) and time of initiation of shortage (t₁) by 
calculus-based optimization. 

The model is illustrated numerically using a case study based on two dry food products (pasta and rice). The 

instance illustrates how a company can use the result to find optimal order quantity (2,137.66 order units), cycle 

length (17.72 days), and the strategic place to introduce shortage (15 days) to minimize total cost (₹1,920.43 per 
unit). This kind of practical implementation helps close the theoretical gap to real-world use. The sensitivity 

analysis yields valuable information about the impact of parameters on system performance. Of special 

importance is the result that the parameter of degradation (θ) and the mean lifetime (μ₀) becomes quite a 
dominant parameter in total cost with its effect on the objective function that is nearly close to double when θ 

rise of about 40%. This underscores the need to develop a reliable estimate of the rate of deterioration and 

product lifetime. On the other hand, the system exhibits more robustness against changes in demand parameter 
(b) and more sensitivity to backlogging parameter (α). The graphical presentation helps to visually understand 

these relationships and it can be seen how the various parameters affect the optimal cycle time, lot size and 

total cost. These diagrams facilitate more intuitive interpretation of the model in different situations, rendering 

more approachable the complicated mathematical relationships used by practitioners. 

Practically, the model provides useful recommendations for inventory managers of items with short life spans. 

We develop an algebraic model for this with a view to supporting optimal decisions about stock levels by 

contributing to the understanding of trade-offs (in terms of holding costs, shortage penalties and deterioration 
losses). This can result in substantial enhancements to working capital turns, customer service levels and profit. 

The work is a contribution to the inventory management literature since it covers a difficult, but common, 

situation of many firm problems. With time-dependent demand, partial backlogging and deteriorating items, 

the proposed model is closer to the reality in inventory systems than the classic models with some unrealistic 
assumptions. The fully cost-based structure and optimization principle enable the firms to make more effective 

decisions regarding how to manage short-life-cycle products in the erratic market with any level of customers' 

backordering preferences. 

9. CONCLUSION 

The best replacement strategy for lifetime inventory with partial backlogging is an important breakthrough in 

inventory management both in theory and practice. By taking the recourse to strict mathematical modeling, 
this study has come up with a model too which properly accounts for the subtleties involved in products with 

finite life in a market with customers of diversified patience. The focus of the model is to combine time-

dependent demand patterns, deterioration dynamics, and the realistic customer backlogging behavior into a 

single, but complete, approach that links theoretical elegance with practical applicability. The results from 
sensitivity analysis yield important implications for inventory managers, such as the uneven influence of the 

deterioration and lifetime parameters over total cost, while the changes of demand growth and backlogging 

parameters have a smaller effect. This indicates that it is essential to correctly estimate the deterioration rate and 
the life of products when making the inventory plan. 

The pragmatic relevance of considering the (s, Q, CS) policy is spelt out in the case study in dry food products, 

which provides empirical support to the model that strategic choices regarding order quantities, cycle lengths, 
and planned shortages can notably reduce costs while not sacrificing service levels. The finding that the timing 

of replenishments continues to be effectively timed at some point across the parameter space provides useful 

operational insight since it indicates that depending on the value of the additional cost, firms can in fact 

coordinate some of the attributes of a replenishment plan even when other factors in the replenishment 
consideration set are subject to change. This study also provides insights and tools for academics and 

practitioners in the fields of inventory management; the tactics developed are based on yesterday s and today s 

best practices for multi-echelon systems where demand and lead times change. For future research, this model 
provides the groundwork for exploring the class of adaptive inventory policies that can change their structure 

due to changes in the market environment throughout the product life cycle. With the growing emphasis on 
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sustainable prospects and resource efficiency, the adoption of these advanced inventory models is indispensable 

in minimizing waste as well as sustaining a competitive edge. By allowing more accurate calibration of 
inventory levels taking into account remaining product lifetime and customer behavior patterns, such an 

approach does not only improve financial performance but also (and possibly more importantly) is part of 

broader environmental and social objectives by minimizing waste due to obsolescence and improving customer 

satisfaction due to more reliable product availability. 
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