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ABSTRACT 

The rapid advancement of artificial intelligence has introduced significant potential for data-driven 

research in materials science. This study investigates the capabilities of Large Language Models (LLMs) 

in extracting and rea- soning with complex materials science information. We assess the performance of 

models such as GPT-3.5-Turbo and GPT-4 in named entity recognition (NER) and relation extraction (RE) 

tasks, focusing on their ability to handle domain-specific materials and property expressions. Using datasets like 

MeasEval and SuperMat, we compare these LLMs against traditional rule-based approaches and BERT-

based models, establishing a baseline through precision, recall, and F1-score metrics. Our novel evaluation 

method, which normalizes materials to their chemical formulas for pairwise element comparison, reveals the 

strengths and limitations of LLMs in materials science. While LLMs demonstrate proficiency in general tasks, 

our results highlight the challenges they face in tasks requiring deep domain knowledge and the necessity for 

further refinement in this field. This research contributes to the understanding of how AI can be harnessed to 

accelerate the discovery and design of novel materials, marking a step towards more efficient and automated 

processes in materials science. 

I. INTRODUCTION 

Mining information from the scientific literature is gaining momentum in material science because of its 

availability and other attempts to increase its usage. Data for AI in materials science is often sourced from 

research papers, databases, lab experiments, or first-principles calculations [1]. The use of big data in this 

field has shifted from random meth- ods to more efficient, data-driven techniques. For instance, mining 

computational screening libraries has identified CO2- binding sites, aiding in the discovery of materials with 

specific properties for wet gas environments [2]. Machine learning has been applied in high-entropy alloy 

discovery, leveraging probabilistic models and neural networks [3]. However, a key limitation in advanced AI 

for exploratory materials science is the lack of sufficiently large and diverse datasets suitable for data mining 

[4]. A central tenet in data-driven materials discovery is that sufficient data and appropriate techniques could 

significantly streamline new material development [5]. Materials science is moving from traditional manual 

processes to automated, parallel, and iterative processes driven by AI, simulation, and experimental automation 

[6], [7]. Despite the availability of large text-based information in materials science literature, it remains 

underutilized due to the challenges of extracting data from diverse formats such as unstructured text, tables, and 

figures [8]. Consequently, much data extraction still relies on manual effort. While structured databases exist, 

they are limited and expensive to maintain due to the labor-intensive curation required [9], [10]. 

Challenges: One significant challenge is ensuring the qual- ity and relevance of materials science data. This 

often requires domain expertise, as different materials, such as polymers, metal-organic frameworks, and high-

entropy alloys, have dis- tinct physical and chemical properties, methods, and termi- nologies. For instance, 

classifying superconductors can be complex, combining chemical-based classes like cuprates [11] and iron-

based materials [12] with phenomenological cate- gories like heavy fermions [13]. Furthermore, confusion can 

arise from the polysemy of terms across sub-domains, where the same term might have different meanings. For 

example, ”TC” may refer to ”Curie Temperature” or ”critical tem- perature” depending on the context. These 

domain-specific conventions pose significant challenges when building cross- domain datasets. 

Problem Statement: The advent of large language models (LLMs) marks a new era in technology, excelling in 

connect- ing diverse concepts and engaging in complex reasoning [14], [15], [16], [17]. Rule-based approaches, 

though simpler and faster, are labor-intensive to refine and struggle with gen- eralization. Small language 

models (SLMs), such as BERT- based models, are more task-specific but require less fine- tuning due to the 

diverse data used in pre-training. LLMs, with larger context windows (up to 128,000 tokens for GPT- 4-Turbo), 

offer an advantage in sustaining contextual memory over BERT models, which are limited to 512 tokens [18]. 

Interaction with LLMs through prompts makes automation more accessible, but their true reasoning capabilities 

are still under evaluation. 

Previous work on information extraction (IE) suggests LLMs are capable of handling general tasks but 

underper- form in domain-specific areas [19]. Studies comparing LLMs and SLMs for tasks like named entity 

recognition (NER), relation extraction (RE), and event detection (ED) across various domains show comparable 
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results [20], [21], [22]. In materials science, GPT-4 has demonstrated some understand- ing of chemical 

compounds [23], but its knowledge remains general, lacking the ability to incorporate real-time scientific 

literature [24]. This study evaluates the potential of LLMs to comprehend, process, and reason with complex 

materials science information. 

Objectives: This work addresses two key questions: 

• Q1: How effectively can LLMs extract materials science- related data? 

• Q2: To what extent can LLMs apply reasoning to relate complex concepts? 

Approach: We categorize materials science data for novel materials design into two primary elements: 

material descrip- tions and property expressions. Property data, such as critical temperatures, follow structured 

formats, often including modi- fiers, values, and units. Material definitions are more domain- specific, requiring 

detailed descriptions, including composi- tional ratios and processing methods. Identifying materials is 

challenging due to inconsistent naming conventions used in research. 

To address Q1, we evaluate LLM performance on NER tasks, focusing on extracting materials and properties 

from relevant datasets. 

NER [25] is crucial in information extraction, aiming to identify and categorize entities such as materials, 

dopants, conditions, and properties from unstructured text. This task aligns with sequence labeling, where each 

text token is tagged with a predefined category, crucial for building structured datasets in materials science. 

We address Q2 by assessing the capability to establish connections between a predefined set of entities and 

ex- tract relationships within a given context. Extracting relations between entities is a foundational undertaking 

in NLP. It entails discerning connections or associations among entities referenced within textual data. For 

instance, in biomedical research, relationship extraction might involve identifying the association between 

specific genes and diseases mentioned in scientific literature. 

II. EVALUATION 

We assess our model’s performance using metrics such as Precision, Recall, and F1-score against a baseline 

established by scores from a BERT-based encoder and a rule-based algorithm from our prior studies [26], [27]. 

Our models are required to generate outputs in valid JSON format to facilitate structured database extraction 

(Section III-A1). 

Evaluating generative models adds complexity compared to traditional sequence labeling methods used in 

Named Entity Recognition (NER). While sequence labeling directly matches input and output tokens, 

generative models may yield structurally different outputs. In cases of material expressions, we introduce a 

specialized evaluation method that normalizes materials to their chemical formulas and compares individual 

elements. For instance, while ”solar cell” and ”solar cells” re- fer to the same concept, ”Ca” (Calcium) and ”Cr” 

(Chromium) are distinct, highlighting the need for a precise evaluation approach. 

Our Contributions are Summarized as follows: 

• Benchmarking LLMs for information extraction, particu- larly NER of materials and properties (addressing 

Q1). 

• Evaluating LLMs for Relation Extraction (RE) in mate- rials science (addressing Q2). 

• Proposing a novel evaluation approach for material entity extraction based on ”formula matching” through 

element comparison. 

III. METHOD 

We utilize three OpenAI LLM models: GPT-3.5-Turbo (gpt-3.5-turbo-0611), GPT-4 (gpt-4), and GPT-4-Turbo 

(gpt- 4-0611-preview). The evaluation of open-source LLMs is reserved for future work due to their 

limitations in generating valid JSON outputs (Section III-A1). 

Our evaluation employs zero-shot prompting, few-shot prompting, and fine-tuning. Zero-shot prompting 

assesses a model’s generalization to unfamiliar tasks, while few-shot prompting tests adaptation with minimal 

examples. Fine- tuning involves adjusting a pre-trained model for specific tasks using a smaller dataset. 

We selected two datasets: MeasEval [28] for extracting measurements and SuperMat, an annotated dataset 

on super- conductors [29]. Baseline scores were established using a SciBERT-based encoder and a rule-

based RE algorithm [26]. Evaluation metrics, including Precision (TP/(TP + FP )), Recall (TP/(TP + FN 

)), and F1-score (2 · Precision · Recall/(Precision + Recall)), were computed through pair- wise 
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comparisons of predicted and actual entities. The re- sults encompass average F1 scores and their 

standard de- viations across three runs, with detailed results provided in 

Appendix ??. 

A. Named Entity Recognition 

The NER task involves identifying entities such as materials and properties. We employed four matching 

methods, high- lighting the most relevant: 

• Strict: Exact matching. 

• Soft: Ratcliff/Obershelp similarity with a threshold of 0.9. 

• Sentence BERT: Semantic similarity comparison using a threshold of 0.9. 

• Formula Matching: Our proposed method normalizing materials to chemical formulas and performing 

element- by-element comparisons. 

Prompts for LLM interaction consist of system and user prompts. The fixed system prompt guides the model, 

while user prompts request specific information about materials and quantities. 

For few-shot prompting, we included suggestions based on prior model outputs, which may not be entirely 

accurate but serve as examples. 

1) Output Format: We required outputs in valid JSON format for several reasons: a) JSON is machine-

readable and easily de-serialized. b) The schema can be documented independently of programming 

languages. c) JSON is an open standard for universal use. 

Formatting instructions in user prompts specified the ex- pected JSON schema, as illustrated below: 

2) Formula Matching: Matching materials with generative models is challenging due to potentially differing 

outputs. Traditional methods have relied on manual evaluations. We propose a novel formula matching 

method, enabling element- by-element comparisons of normalized formulas derived from our previous work 

[26]. 

This method enhances evaluation precision by comparing materials at a granular level. Details of the evaluation 

and discussion are found in Section IV-B. 

B. Relation Extraction 

The baseline for RE is established using a rule-based algorithm from our prior work [26], evaluated with Super- 

Mat. Prompts are designed to group entities based on their relationships, with a strict matching criterion for 

scoring. 

Further details are presented in Section IV-E. remain rele- vant for both system and user prompts, with the task 

descrip- tion reiterated in each prompt. 

1) Shuffled vs. Non-Shuffled Evaluation: The order of en- tities provided to the Language Model (LLM) can 

influence evaluation outcomes, particularly when models generate rela- tions sequentially. This can lead to 

inflated scores that don’t accurately reflect the model’s relational reasoning capabilities. To mitigate this, we 

assess relation extraction (RE) using two approaches: non-shuffled evaluation, where entities are presented in 

their original document order, and shuffled eval- uation, where entities are randomly rearranged before being 

input into the prompt. 

C. Fine-Tuning Considerations 

We fine-tuned the GPT-3.5-Turbo model on the OpenAI platform, which allowed us to create a new model in 

just a few hours. As of now, fine-tuning for GPT-4 and GPT-4-Turbo is unavailable. All fine-tuned models 

utilized default parameters set by OpenAI. 

Table V summarizes the dataset sizes used for training. For properties extraction, we fine-tuned using the 

”grobid- quantities dataset” [27] due to the insufficient examples in MeasEval for reliable evaluation. 

The primary challenge with the fine-tuned model was generating valid, machine-readable JSON output. While 

we initially formatted the training data to expect valid JSON, the model struggled to produce it, likely due to a 

lack of training examples. To address this, we shifted to a pseudo-format that used spaces and line breaks to 

simplify the model’s output. For instance, the expected output for a RE task was structured as follows: 
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This technique allowed us to fine-tune the model for con- versational responses, after which we used the base 

GPT-3.5- Turbo model to convert the outputs into JSON format. 

To enhance fine-tuning for the RE task, we introduced variability in the sorting of entity lists (Section III-B). 

This method maintains dataset size while reducing the risk of the model learning to group entities based 

solely on their document order, referred to as ”FT.base.” In Section IV-E1, we discuss two additional strategies 

for preparing the fine- tuning data. The ”FT.document order” strategy keeps entities in their original document 

order, which we found detrimental to performance during shuffling evaluations (Section IV-E). The 

”FT.augmented” strategy increases dataset size by gen- erating multiple training records with shuffled entity 

lists for each example in ”FT.base,” roughly doubling the dataset size (Table V). We anticipate that this 

approach will yield performance comparable to or better than ”FT.base.” 

IV. RESULTS AND DISCUSSIONS 

In this section, we present and discuss the formula matching and the aggregated results of our evaluations for the 

LLMs. The completed raw results are available in the Appendix ??. 

A. Limitation of this Study 

In this paper, we aim to estimate how well LLMs work in tasks related to materials science. Due to the lack 

of clean datasets covering the entire materials science domain, we used a dataset that focuses on superconductor 

material. While our goal is to propose a methodology, we are aware that our results need to be verified 

empirically in other materials science sub- domains in future works. The following intuitions support our 

hypothesis: for material NER, we expect that the forms on which materials are presented in other domains 

would have similar expressions to the ones used in superconductor re- search, considering that chemical 

formulas, sample names, and commercial names would unlikely be very different between domains. 

Furthermore, the properties, expressed as measure- ment and physical quantities, are common to all domains; 

although the statistical distribution could be different, we don’t expect dramatic differences within materials 

science. On the other hand, RE tasks surely require more datasets that focus both on different domains 

and different flavours of the same task. As an example, the MatSCIRe [30] dataset, which covers battery-

related research, proposes a structure that challenges the relation extraction only between two entities (binary 

extraction) with the addition of the type of relation which could be inferred by the properties being extracted. In 

conclusion, we will remand the generalisation for further work. 

B. Formula Matching 

We evaluated the formula matching to measure two main pieces of information: the gain in the F1-score, and 

the correctness, as the number of invalid new matches, of the gain. We compared the formula matching with the 

strict matching because a) it is simple to reproduce and understand visually, and b) the formula matching is built 

on top of strict matching. We would have more difficulties explaining matches provided by soft matching or 

SentenceBERT. 

We examined the GPT-3.5-Turbo NER extraction (discussed in Section IV-E). 107 out of the 1402 expected 

records matched correctly using strict matching (P: 22.5%, R: 13.64%, F1: 17.01%). Applying formula 

matching on the mismatching records, we obtained an additional 176 matches (P: 61.12%, R: 36.00%, F1: 

45.31%), for a total gain in F1-score of 28.3 (+266%). For the new 176 records that the formula matching was 

identifying, we manually examined each pair finding 5 incorrect matches, which corresponds to an error rate 

of 2.5%. Most of the mismatches in the strict matching caught up by the formula matching were due 

to missing adjoined information. The LLMs were not able to include information about doping or shape in 

the response (e.g. hole-doped La 2-x Sr x CuO 4 was not matching with La 2-x Sr x CuO 4).  

In other cases, the formula was different by formatting, like: Nd 2-x Ce x CuO 4 and La 2-x Sr x CuO 4. 

However, the more interesting cases were provided by element or amount substitutions such as: electron-

doped infinite-layer superconductors Sr 0.9 La 0.1 Cu 1-x R x O 2 where R = Zn and Ni which  was matched 

Sr0.9La0.1Cu1-xNixO2, or Eu 1-x K x Fe 2 As 2 samples with x = 0.35, 0.45 and 0.5 and Eu 0.5 K 0.5 Fe 2 

As 2’. These two cases were particularly complicated to match because they required a deeper understanding 

of the formula structure. 

Among the errors of the formula matching, all of them were provided by the formula which was not correctly 

parsed, for example in one complicated case with the substrate information:  (1-x/2)La 2 O 3 /xSrCO 3 /CuO in 

molar ratio with x = 0.063, 0.07, 0.09, 0.10, 0.111 and 0.125 which was incorrectly matched with the general 

La2O3. 

C. NER on Properties Extraction 
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Suddenly, none of the models outflanked grobid-amounts in zero-shot provoking, as portrayed in Figure 2. This 

result is astonishing looking at that as a) the statement of properties comes up short on unambiguous space 

requirement (beside possible varieties in recurrence dissemination), and b) estima- tions of actual amounts are 

logical common in the broad text corpus used to pre-train the OpenAI models. 

In the domain of few-shot provoking (Figure 2), a minimal improvement was noticed exclusively for GPT-4 

and GPT- 4-Super, bringing about a F1-score gain going around 2%. In any case, this improvement isn’t 

huge. We speculate that the clues gave to the LLMs might present predisposition. At the point when these clues 

are mistaken or fragmented, the LLMs battle to direct the age really, influencing the nature of the result results. 

Essentially, the calibrated model (Figure 2) shows a slight improvement contrasted with zero-shot, barely any 

shot, and the benchmark. Curiously, in this particular case where both the gauge and adjusted models are 

prepared and assessed on similar information, the LLM shows a surmised 3% increment in the F1-score. 

D. NER on Materials Expressions Extraction 

The assessment of material articulations extraction was performed utilizing the parcel of the SuperMat [29] 

dataset committed to approval, comprising of 32 articles. 

In zero-shot provoking (Figure 3), both GPT-4 and GPT- 4-Super accomplished tantamount F1-scores, drifting 

around 50%. Prominently, all LLMs scored something like 10% lower than the baseline [26]. This divergence is 

normal, considering that material articulations might include broad arrangements and envelop different snippets 

of data not effectively conveyed in the brief. Barely any shot inciting (Figure 3) yielded superior outcomes, with 

GPT-3.5-Super and GPT-4 somewhat unparalleled the pattern. The presentation of clues in the brief to be 

sure upgrades execution, however, as recently talked about, it appears to unequivocally impact the LLMs, not 

ready to relieve the effect of invalid clues that might be given. Similarly startling, adjusting didn’t beat not 

many shot inciting. This result proposes that the extra preparation didn’t fundamentally upgrade the LLMs’ 

capacity to deal with material articulations. 

E. Relation Extraction 

The assessment of RE used the total SuperMat dataset, with the outcomes showed in Figure 4, looking at the 

impacts of rearranging across various models. 

GPT-3.5-Super zero-shot and scarcely any shot provoking exhibit a huge contrast among rearranged and non-

rearranged assessment (Section III-B1), recommending a successive asso- ciation of substances without explicit 

logical thinking. Promi- nently, the adjusted GPT-3.5-Super model outflanks the stan- dard by roughly 15% F1-

score and doesn’t show important contrasts when the assessment is performed under rearranging conditions. 

Figure ?? explicitly features the rearranged variant of each model and extraction type. Aside from GPT-3.5-

Super, scarcely any shot provoking shows an improvement contrasted with zero-shot provoking, accomplished 

by consolidating extra models in each brief. GPT-4 and GPT-4-Super likewise show stable outcomes under 

rearranging conditions, accomplishing a F1-score of around 15-18% lower than calibrated GPT-3.5- Super. 

1) Data variability for fine-tuning: In Section III-C, we de- pict two extra ways of setting up the information 

for adjusting. As shown in Figure 6, the GPT-3.5-Super model adjusted with the procedure ”FT.document

order” showed a powerlessness to sum up when assessed under rearranging conditions, where the model loses 

around 30% in F1-score. This proposes that adding entropy (for instance, by rearranging the information) ought 

to be proceeded as a best practice, which could bring about models with bigger thinking capacities. 

At the point when we expanded the size of the dataset utilized in adjusting to practically twofold (Table ??), the 

subsequent model didn’t work on contrasted with the FT.base. These outcomes affirm that in calibrating, size 

doesn’t make any difference, while information changeability and quality do. 

V. CONCLUSION 

In this study, we have proposed an evaluation framework for estimating how well LLMs perform compared 

with SLMs and rule-based tasks related to materials science by focusing on sub-domains such as superconductor 

research. The findings obtained from our work provide initial guidance applicable to other materials science 

sub-domains in future research. 

To evaluate material extraction comparison, we proposed a novel method to parse and match formula 

elements by elements through an aggregated parser for materials. This new method provides a more realistic F1 

score. Compared with strict matching, we obtained a gain in F1-score from 17% to 45% for GPT3.5-Turbo 

NER at the price of a minimal error rate (2%). 

 



International Journal of Advance and Innovative Research   
 Volume 12, Issue 3: July - September 2025 
 

195 

ISSN 2394 - 7780 

 

We then assessed LLMs on two assignments: NER for materials and properties and RE for connecting them. 

LLMs fail to meet expectations essentially on NER undertakings than SLMs in material and property extraction 

(Q1). This finding is especially amazing considering properties since these articulations are not bound to a 

particular space. 

In material extraction, GPT-3.5-Super with calibrating ne- glected to outflank the standard, and similar holds for 

any model with not many shot provoking. For property extrac- tion, GPT-4 and GPT-4-Super with zero-shot 

inciting perform comparable to the standard. GPT-3.5-Super with few-shot and calibrating, then again, beats 

the standard by a minor expansion in focuses. That’s what our outcomes recommend, for material articulations, 

little particular models stay the most dependable decision. 

The situation improves for RE (Q2). With two models, barely any shot inciting exhibits a critical improvement 

over the standard. GPT-4-Super shows upgraded thinking abilities contrasted with GPT-4 and GPT-3.5-Super. 

GPT-3.5-Super performs ineffectively in both zero-shot and scarcely any shot provoking, showing a significant 

score decline when elements are rearranged, which lines up with past perceptions. By the by, calibrating yields 

scores better than the gauge and different models, showing soundness while looking at rearranged and 

unshuffled assessments. 

All in all, to answer Q2, GPT-4 and GPT-4-Super feature powerful thinking abilities for precisely relating ideas 

and removing relations without calibrating. Be that as it may, calibrating GPT-3.5-Super out yields the best 

outcomes with a generally little dataset. GPT-4-Super, which costs 33Notwith- standing, for Q1, for removing 

complex substances, for exam- ple, materials, we find that preparing little particular models stays a more 

compelling methodology. 
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FIGURES & TABLES 

 
Fig. 1: Two materials that appear to have a very different composition are, in reality, overlapping. 

Task Preparation strategy Dataset # Training # 

NER N/A SuperMat 1639 703 

NER N/A grobid-quantities dataset 485 208 

RE FT.base/FT.document SuperMat 344 148 

RE FT.augmented SuperMat 695 299 

 
Fig. 2: Comparison scores for properties extraction using NER. 
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Fig. 3: Comparison scores for material extraction using NER. 

 
Fig 4: Scores of the shuffled extraction using zero-shot prompting, few-shot prompting and the fine-tuned 

model for RE on materials and properties. 

 
Fig. 5: Overall evauation. 
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Fig. 6: Evaluation of the impact of data variability in fine-tuning GPT-3.5- Turbo. 


