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Abstrace—Thiz paper explores sipnificant advancements in
nucleation theory by extending the bimary X-point Free Energy
Compozion (APFC) model to better capiure the complexities
of precipitation processes, Initially, two key extenzions are in-
troduced: the meorporation of an enthalpy of mixme fo address
non-ideal mixing behaviors and a general phenomenology for
modeling denziy pair correhiion fmctionz The= enhancement=
enable a more accurate repremntation of eguilibriom phaze
dizgramsz, incloding the ability fo reproduce metaztable faa-
imres zuch az submerged Ligmd zpinedals below eutectic poimis.
The =zindy applies these improvements to mvestigate munki-
step nuckation pathways m precipifation processes, particubrl
in the context of gold manoparticles The resulz demonstrate
that the improved XPFFC model effectively captures the kinetic
pathvays obzerved experimentally, revealing a rich landsecape of
nucleation behaviors The Fmﬂ.ug'! hzhlzht the impact of guench
paramefers, smlution concentration, andpamrhm];,d;m&m;_,nn
nucleation kinetics, Futnre applications of the improved XFFC
model melode examining the effects of elsticity on nudeation in
mopptectic and pmtectic svstems, as well az addreszing =tability
izzues in papperysalline binary alloys, This remarch underscores
the model’s potential to provide deeper insights into varions
material: zcience phenomena beyond preapita tion,

L INTRODUCTION

The smdy of allovs in materials physics holds broad signif-
icanee due to the strong dependence of materiz] properties
on microstructurs, which evelves throush non-squilibrium
phase transformations during formation. This impacts diverse
mdustries such = steel, slummum, pang-fabrication, and gpte-
electronics. A key paradigm for understanding complex alloy
microstructires iz the binary alloy.

Bmary zlloys exhibit 2 rich div ersity of properties dus to
thei Ii“pEﬂliEﬂtE on processing pm:l:ls_ mictostructural fzz-
fures like prain boundaries and dislocations, and solidification
processes. Constructng models to explain these behaviors is
crucizl. Current models of alloy selidification zre categorized
by length znd time scales, ranging from contmuum methods
for macroscopic sceles, Phase Field metheds for mesoscopic
sczles, znd Phase Field Crystzl (PFC) methods for nangscopic
changes.

This thesis focuses on extendmg the binary XPFC model,
2 variant of PFC theory that enzbles simulation of 2 wide
range of crystal symmetries. While binary PFC models have
been successful m describing phenomenz such 23 entectic
and dendritic solidification. clustering, and epitaxizl growth,
limitztions remain m thewr description of phase dizgrams and
correlation funetions. The XPFC meodel mmproves wpon the
origimzl PFC by providing 2 mors rebust phenemencleogy for
moedeling correlation functions and crystal structures.

Diespite these mprovements, the binary XPFC modsl as-
sumes 2 preferred structurs at high znd low concentrations,
limiting its application m scenarios like symtectic phase di-
agrams. where intermedizte concentration structires are sig-
nificant. Additionally, the XPFC model assumes an ideal free
enetgy of miming, which restricts its zhility to describe non-
tdezl zlloy systems.

The research presented m this thesis zims to: (1) refme
the XPFC theory with 2 mote genersl phenomenclogy for
pait correlation fimetions, (2) extend the free ensrpy of mix-
mg to account for non-ideaity, and (3) use the new XFFC
midel to elucidate mult-step nucleation processes observed
m diffuston-limited systems.

The remamder of this paper iz stuctured 2z follows:
Chapter II mtroduces Classiczl Density Functional Theory

(CDET).

Chapter VI extends CDFT to sclidification and introduces
PEC theory.

Chapter X reviews binary PFC theory and ewisting alloy
medels.

Chapter XIV prasents novel mprovements to the XPFC bi-
nary alloy theory.

Chapter XVII zpplies the new medel to study multi-step
nucleation of nanoparticles and discusses futurs zpplice-
tions,

IL INTRODUCTION TO CLASSICAL DENSITY FUNCTIONAL

THEORY

Meny physicel theories are derived using 2 succession of
spproximations. While each approximation vields z theery
that 15 mpre narrow m scops, it is typically more tractable
to ether analytical or numerical analysis. Classical Density
Functional Theery (CDFT) iz dertved using this zpproach and
i this chapter we'll examine each approximation and the
mtermedizte theory they supply.

CDFT iz = ﬂ:l“ﬂﬂ- of stztistical mechanies. This mesans
CDFT connects microscopic physics to macroscopic ghsery-
gbles using statistical mference’ mstezd of sttemptmg to
computs microscopic equations of motion. The microscopic
physics m this case is most accurately described by many-body
guantum mechanics and se the theory of quantum statistical
mechanics i 2 natoral sterting point in 2any attempt to caleulats
thermedynamic observables.

Statisticz] mechanics i3 not 2lways describad a5 statisdeal inferemce B
wasks of E. T. Jaymss for detzdls on this approach [1]
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Wa will === that for owr systems of interest that the
full guantem statistical theory iz complstaly imyactabla, To
przpead. wa'll look at guanten statisticsl mecheamdcs in the
pemiplassical iimir, In the semi-clazsical limit wa'll devalop
a theory of inhomosopons fluids callsd Classical Demsity
Functional Thaoer {CDET). Finally, we'll sa= that constructine
exac) O=e enerey fumctipnsl: for CDFT is rasly possible and
lopk at an appromimation schems for thess funcriopals.

L Bransnioar Me

HAMICR 1N THE BEMISCLASRICAL

LIxI]

At a microecopic laval &l systams ars govemead by the fim-
damants] physics of guantem mechamics. Statistical machamics
and in particulsr guambem statistical mechamics provida: 8 map
batwaon thiz micrescopic reality and macroscopic tharmaod-
pamic obsarvables, For most applications, guantem statistical
machanics iz both intractabla to analyvsi: and contsine mos=
datail than necssssry. Fog instancs, the peecize bpeogdic of
fermionic natere of the particles in the svstem offem has
litfls conz=gusncs on the themodymamic propartiss. We can
igmod2 soms of thass guantem mechandcal detsils by leoking
at statizticsl machanic: in the semi-classical imir.

For tha saks of clarity, wa'll look at a system of N idantical
particlas in the canonical snzembls which iz strsightformand to
gamardlize to multi-componant systems and other snzembles.
Wa start with the definition of the partition finction for a
system of many particles,

z-1 e W

A izthe Hasmiltonian SL + v ().

P iz z2t of particle momenta (o, Pz Bl _

gis tha inverzs tempersfurs L7k, T where k, iz the

Boltzmann copatant,
Wignar [2], and shortly after, Kidorood [3] showsd that the
partition fimction could be oxpandad in powsez of B, facil-
itatipg the caloulation of both a claszical limit apd guantem
cofractions to the partition finction. Their mathod, the Wiznar-
Kidoppod sxpanzion, involves avalesting the trace opsration
over 3 basiz of plame wave solutions, ,

7i8) - SR s 2l e drie bl
Wheara dr iz the phass zpacs messuwre dpdainkl™ | To
computs the imesrsnd, Jfg. pl, w2 follow Uhlenbedk amd
Baths [4] and first computs its derivativa,

dla. Pl en.He~ Loila. B 3
— -
Wa then maka a chanes of varisblaz, jlg, pl = ¢ W (g pl,
whera Hz the dassical Hamiltonian. The new function
W g, p) swoodaes the daviation fom classicsl hehayjpnr dos
to a lack of commutation of the potantial and kinstic snerey
terms in the Hamiltondsn, Substituting thizs radefined fom of

Ilq, p) inte sguation 3, uzing the sxplicit form of the guantem
Hamiltonizn and aftar a considerables smount of algabra wa
find a partial diffsrential sguation for W,

W

Tl
- Mg BV 2V )4+ BV )2
oo - -

ra

-

— 28Vl | Vg +2 Pl'r_ al

)
Az in typical in parurbation theoriss, the solution can be
anpandsd ina powersenes of azmall nember, in this case k.
accopding to W =1+ B =KW = By substituting thiz
sppanzinn into ilg. p) = & W g, p) amd i(p. q) beck into
aguatipn 2 we find a power safie: axpanzion for the partition
function as wall,

I
Z=1+h (Wh=hE{Wis_. gre™ {3
VWhers the gverass (W), demotas the the classical averaza
=
{Alp. ql) = ; drafp. qle . ()
Solving aguation 4 to zecond ogder in B and computing the

clazsical avafazas in aguation 5 the guantem comsctions to the
claszical partition ar= computad to 2acond ondar as”,

(Wi} =0 . n

- i R @)
Wzj = ——— ol L
' 24

Tha firzt ogder torm iz zero becanse JWhlg, p) iz an odd
finction of p. In terms of the Halmboltr fres snersy fiod
axampls, the comections to s.m-.'iﬂmdat would ba,

(] E
Wk lall® -
Thats ar= a fow items of importance in sguation 9. First

of all, the corection iz inverzaly propodtional to both the

temparatire and the perticls mass. Fog coppsr &t oom tem-
paEhye, for instancs, the prefagtor FFA°/24m) iz O10°9)

gr &t itz melting temperatere the prefactor iz O (10 5| The
cofraction i: also propoctionsl to the mesn of the sguarsd
foqoe falt by each particla. 5o high deneity materials will have

a higher guantum codrection becanss they zampls the shoni-

fzngs repulsive region of the peir potentizl moss then their

logs: demeity countar parts.

A Elﬁ"';!iﬂ"—'}'lﬁ'—"‘ﬂ'

Thar= iz an important distinction to be mads betwesn the
guantum thaory and the thepry in the semi-classical limit. The
intaeral over phass space of the partition function must only
take into accoumt the pipaically &fferenr states of the system.
In the guantem thepgy thizs iz achiszved by tracing over any
ofthonommal basdiz of the Hilbert spaca but in the claszical the-
oy, wea nead to be carsfil not to doubls count state:s invelving

:F.\,E
F - |'-.:l'_'-n.l:'_'I * EEr

&

“For deiled cakoulations see 4]

Wig ph
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identical particle configurations. Classically, sxchangs of two
idemtical particles dioss not gesult in a physically diffsremt state
ang thus thess states should be comsidared only omce in the
sum ovel states in the pattition finction. Mod2 precizaly, we
shpuld write the classical partition function as,

J

Z=  de

Mﬂﬁmhw commen Caia ﬂf.!s! 1d=-'n13c31
particlas, the phaz= 5]::5:& intasral baopmeas,

{11}

Ageresating our results, we can thus write the pattition fipe-
tiop in the sami-claszical limitas,

|
(&) = 81 : 7
A T R T ) (12
O, in the grand canomical smz=mbla,
< o I
= E - " 1 3
=lu 8) e T AT e 8H =+ DR (13)

Of couf=a, to f=t oodarin b, this iz exactly the form taught
in introductody courze: on statistical mechanics and derived by
Gibbs’ prior to any Inowladee of quantum mechanics [6]. The
L=y inzight hare iz to undarstand, in 3 controllsd way, when
thiz approximation i accurate and the masndtuds of the next
QuEntEm corection iF a8 sesm in eguation 8. We now apply
thiz s=mi-claszical limit of statistical machanics to the study
of tha local deneity fiald,

W, Crassicar Densiry Fuscriosal THEGRY
Oztanzibly, when we study fommation and evelution of mi-
cipstmciure in solids, out obesrvable of intarsst is the density
fiald. As por wsual in theosias of statiztical themodynamics we
must distinguizh betwesn microscopic opsrastors and macno-
Epppin obssrvablas (the latsr being the snsembls avaraz e of the
former’). In classical statistical mechanics, oparators ars simply
functions owver the phase space, . We use the term opsratod
to make conmection with the guantum mechanical theooy. In
tha casa of the denzity fisld, the microscopic opsrator iz the
sum of Dhigac delta fimctions at the position of sach particla,

: -
fk gl F¥ (x-aq) {14)
il
From which the thermodyneamic obsarvable iz,
gl = ("0 al) = Ir [»"(x aif (q. pl] {13
Whate, Tr[] mow demotes the classical tracs,
- I
Trlala piflg. pil T diéla pifig pl (18
LT T |
1t Th i Cribbs' fomrmal was jestified on dimessional groends and was

simphy inirodeced a% o scaling facior with wnis of action {1 - 5)

And, flq, p}is the aquilibrivm probability density function,
, I o EH gl ) 1
flap L 17
whara H iz the classical Hamiltonian, u the chemical potential
of the system and =(w &) iz the zrand parttition fimction of
the s¥stem.

To construct 2 theory of the density fisld we mview the
penal msthodolesy for statistical themoedymamics. Wa will
do 20 in the fams of snbiopy maximization in which the
antropy i3 maximizad subject to the macroscopically availabla
information. Taking the sxistance of an averass of the density
fiald, particls numbsr and eneey a8 the macoscopically
available information, we can maximize then GHbb's antropy
fimctional

iflg. pll = kI [fla pla(fla plil. (18

zubject to the aforementioned constraints (fixed averase den-
Zify, patticle number and total ensrey) to find a poobability

damgity, fimction of the fomm,
]

g8 H-ph < deplie(
“Where, 8, v and %) == the Lasrangs multiplisrs associated
with constraints of averass anarzy, numbsr of particle: and
dansity respactivaly. Az vou might imamins, the constraints of
Fverass particle number snd density are not independent and
satisfy, [
P o=

flg. p) = sxp . (1

g ().
e can combins their Lasranzs multlph-'_'is into one,

dabldo(xl) . @D

240

fla. pl=exp -8H
Whera, ¥ = u—d{x], iz the combined Lasranz e multipliag
namad the farrinsic chemical porential. Pecalling that chemical
potential iz the chansse in Halmhbeoltz fiee apasgy mada by
virtua of adding particls: to the system,

dF

dn
the intarpastation of the intrinsic chemdical potsntial follows
as the Helmholtz fizs energy change dus to particlss being
addad to a zpecific locatiom. Wa'll z22 thiz in more detail
brisfly whera wea'll 222 an analogous ageation for the intrinsic
chemical potantial.

The objective of statistical theoriss iz t0 compute the
statiztice of some obssrvabla (random wariabls) of choedca
Two special ssts of statistics provide a complete description
of the obssrvabla’s probability distribution: the mements and
cuwmmdanss® . The caloulation of momsnts and cumlants, can ba
sidad by use of generating fimctions. In the cazs of statistical
mechanics the generating fimctions of momants and gemulants
have zpecial physical significancs. The gsnersting fimction

= K 22

e 7] for disceenion of mormends, ceppalyods and e TNporiance m
sl teetes a | miee R 5
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of moments iz closaly gelatsd to the partition function and
tha penarating finction of qumulants iz cloealy sslatad to the
aszociated themmodynamic potential.

In tha caza whara the obesreshls iz the locsl density fiald
thiz iz mads somewhat moss technical by the fact that the
demeity iz a fimction instead of 3 scalar varishla As such the
partition function iz more precizaly callad the partition floee-
tignal a= it d=pend: on a3 function 2= input The themoedyneamic
potemtial will thues sl2o ba 3 fomctional . Spacifically. the srand
ceppqical pertition functional is, j

S[Wi]=Tr exp —€H + &  dublx)p™(x) - {13)
Az gllydad to showva the partition finctionsl iz 3 typs of
momant senarating functional in the senza that repeated (fumc-
tipnal) diffsremtistion with espact to the intrinsic chemdical
potential vislds moments of the density fiald:

E i E-.: [":.]
Sln) - - Glx, |
Bimilsly, wa can comstrnct A themodynemic potentisl by
taking ths logarithm of the partition function Thiz potential in
particular iz called the grand porential flinciional in analosy
with the srand potentisl of thermoedynamics,

Q] = -k T log (Z[A]) - (23)

The srand potential finctional iz 3 type of umulant senerating
finctionsl in the zomes that repested fonctional differentistion

- (g [a) ._ollx ) - {24)

vields comulants of the density fisld:
e pa) el (26)
- = o (=) -l
) - - Gl )
Wherz, (), denotas the qumylant averaze [7].
If we examine tha first two oumulants,

gt ™ PN =P an

" Gl ] . i
Sl sarasmin et —plalle ) p[x”?a;.

w2 notice two remarkable things: The first, impliss that the
averams domaity fiald iz a function of only it: conjuzats fiald
the intrinzic chemical potsmtial, and the sscond impliss that
that relationship is invertible’. To ze2 this, we compute the
Jacpbiap by combining squation 27 and 28,

S84 - g ") - ol 0”1x) - plx 1))
Sl |
The right hand zida of sguation 29 iz am awtecomrslation
finction and therafprs poeitive semi-definite by the Wainar-
Ehinchip theprem [B]. Thiz impliss that, at l=ast locally,
the intrinzic chemical potsntisl can slways be writtsn 3= a
functionsl of the averass demsity, defo(x)], amd vice wersa

{29

*The ivere fanciion theorem only imphes bocal el there &
Farenies o ghobal menibaline. Indeed phuse Coeadaaars & a munifesation
of s faci where a single mirirec chermeal poderdia | & shared byt phaces

Furthermogs, bacanza all of the hisher ooder qumulants of the
demeity depond on the intrinsic chemical potsmtisl they too
depemad only on the averase deneity,

Givan the importanca of the averams density, oy, it follows
that wa would like to wz2 a thermodynamic potential with a
natprsl dependomcs on the demeity Wa can construct 2 gapsr-
alization of the Helmboltz fras energy that has pracizaly this
charactoeriztic by Lagandrs transforming the Grand potential,

j

Elobd] = Oldlel) +  chabeih

F[g[x]] iz called tha fmrreinsic free enerey floactional.

It cam b2 shown [2] that p[x) must bathe zlobal mindimoem of
tha pramd potentisl which zstz the stams for the methedolosy
of claszical dene=ity functional theory: if we hawe a definsd
intrinsic freo snerpy fomctional E we can find the agoilib-
pium denzity f2ld by zolving the assapciztad Eulsr-Lasrames
S, salal _

Salr}
Finally, wamay constroct an analogoes sgration to ageation
22 for the intrinzic chemical potential,

S _ i,
Sl

&L

o {411

32

which follows from sguation 30 assuming aguation 31. Eqgua-
tion 31 impliss that the intrinsic chemical potential iz the frea
amarmy ooat of adding deneity to the location » spacifically.
V. TECHNIGUES I8 DENSITY FusCriossr THEGRY

The difficulty in formulating 3 density finctional theory
iz the construction of an appropriats oo saneey functionsl.
Whils sxact caloulations are garaly f2asible, thers are 3 varisty
of tachnigus: that halp in building appooximate fonctionsls, It
iz impodtant to note first what we oo computs sxactly. In the

2 of the idadl 2 t2 the tial amd
Eaé.; ﬂﬂj w c:anucnmpu erand potem
] kT T
n-'ﬁ'_'*l - Ty Qﬁiﬁﬂ {33:]
| |
F ) f .
“o] =kX de pldIn A%Pld - pld..  (34)
Wheara A iz the themma] de Emg,]ja wavalsneth
.. ITmA*s
I {35)
kT

Wa may then sxpras: deviation fom ideality by factoring the
idas] contribution owt of the partition fimction,

(1] = 11 o 111 8 (36)
l2adine to prand potentisl and fres snerey fomctiopals split into
ideal and exvess Componsmts,

37
(38)

0=0,+0,,

F = Fuy+ Fuu
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The intsraction potsmtisl, v [g), in the =uces: partition
fupction typically makes a direct appooach to caloelating the
amczss fres snormy intractsbla Thoush pertpthative mathods
including the cluster spaneion tachmiguws [10], have basn
deealppad to treat the interaction potential systematically,
othsr appeomimation schemes for the swossz fres merey s
typically moge prasmatic, particolaly where deriving modsls
that ars tractable for the nemericsl simulation of dynemice iz
concemead. In particolar, we can approcimats the sgosss frea
snarmy by awpanding sround 2 reforemcas homogsneons Awid
with chemical potentisl wy and density oo,

1

Fale] ~Ededl + g+ 000
4 L = EE IH
70 gamadat ,, T AW
... {35

wharz Ap(x) = gplx) — 20 and w2 have introdocsd the
notation + tomesn intasration over fepeatad oo-podinatss for
SRAOPlR, ]
dxf (x)glx).

The sxoess fres snerey i3 the penerating fimctionsl of a family
of cormalation fumctions: callad direcr correlarion floacrions,

ol Galx, )

the first of which, for auniform fAwid, iz the excass contribution

to the chemical potemtial Wa may swpeszs thiz 2= the totsl

chemical potential lazs the ideal contribution (222 aguation 347,

= =g~ Mg =po— keTln Afpo .. (42)

(&)

Flx} = glx] {40)

= B0k, Lk {41)

Trumcating the sxpanzion in aguation 39 to zscond ondsr in
Aplx) and substituting the linsar and guadratic terms from
aguation 42 and 41, we camozimplife the sroszz frae aparey
o,

I }
Folplr)] = Eolea] + r_r{:trf gkl ln Adpa Dpln)
i)
— LBeld v Gl heselr )

{43)

where C¥(r. r) denotes thetwo-point direct correlation
fimction at the refsrence state. Combining aquation 34 with the
simplified swossz free snerey in sguation 4_1 W CED SMpdEsE
total changs in fies anarpy, AF = F — Flog], &=
AF[p(A]=k T dr plrln - (1= E.ijJﬂP[rCl
“ i
[rr}=apr L
{44

.?:.Iﬁ ) E:zzu
_— ol o+
'E.Fu-\.'\.n'-l' ]

W2 find an aguivalent sxpreszion fo the srand potsntisl

after 3 Lagandea ﬂ:.an;,fm

: ald .
afdp(n] =k dr gin In = 847 — apld
e

DAL () , ,
— ol + G (nr)edplr
{45

whara @fr} iz definad a: an extemsl potentisl intnoduwcad
imto tha sywetem for complatenass.

Wazaathat the density functionsal theedy derived hare can ba
darived through a sarjss of approximations from a fimdamental
basiz in guantum statiztical mechsanic: and reguirs: Do mor=
paramaters than the themodynemic datail: of 3 homosanapn:
raferemce fluid. It is reaspmabla to ask af this point whether oo
mot w2 hava really gained amything with thiz approximation
Cheme. Althoush we heve smrived &t & relativaly simpls form
foq the fize snarpy fimctional, we've addad soveral parameaters
to the fimctionsl bazad on the rsfsrem e fludd. Thanlfilly, the
theory of homosanepus liguids iz very wall established. Thiz
impliss wa may r2ly on a3 broad chodoe of analytical nemerical
of sxparimental tachmiguas to deriva thezs parsmeters,

Eguation 44 establizhe: an appooctimats deneity fimctional
theory for inhpmosspons fluids. However, a8 we will 222 in
tha following chapter, the propsrties of the direct comslation
function EEJJ: r| also camria: information sbowt bow the fAwid
zolidifiaz in the solid state a= tempsraturs of density cross into
the ooamiztanca

VI Coassicar Dendimy Fusmcrional THEGRY OF

FrEEZING

The classical demsity finctional theorias derived in chapter
I wers first established to stody inhomossnoos flvids By
copzidering the zolid stats sz an especially extrems casa of
& inhomosenapns fluid [11), we can wese CDFT to stody
tha process of solidification. F:[-L‘l:l'_"l. tha perspactiva of CDFT,
splidificatiop ooowrz: omoe the density fisld develops long
mmEa periodic strecturs, While not expreszad in precizsly
thiz lanzuaze thiz spproach dates back s far 2= 194] with
tha asrly work of Eidowond and Monoe [12] and was later
i pndficantly refinad by Yysspndf and Bamalbrizhnap [13].

W'l zaa that the approach of Xowsspf and Famabrishoan
was very successfil at explaining the solidification in the thet-
mpdynamdc ssmea That i2 to =3v, it alocidats: the parsmaters
r=zponzibla for selidification but not the dvnamical pathway
raiponiibla for the transition. To disoess the pathway towand
aquilibrivm and the non-aguilibeivm artifacts introdwcsd slone
the way into many zolids (2.2 grain boundsries, vacanciss,
dizlocations, otg) w2 procesd to extend the CDFT frame-
wprk uzing the Dvnamic Demzity Functional Theooy (DDET).
Noting that the full DDFT fremewoedk can be intractshla in
practins, we concluds by introducing a simplifisd density
finctional thepsy callad the Phasa Fisld Crystal {PFC) thepry.

V11
To axploge the problem of solidification, wa bagin with the
approximats grand potsntial establizhed in eguation 45 with

AMPLITURE EXPANSING
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tha awtemal p-::nt—'_rnﬁ_la]__ dfr, =2t to zemo,

gagplr]= dr o p S0 _ s
o

1 : :
e cH i ) e ol {44)

To maks our thepdy conorste we must chooess a switsbls
referenge  liquid to ot the pasmaters og and CFr r). We
will chonea the refaremca ligeid to be the ligeid at the malting
peint with dansity o,

Scaling ot a factor of g, we com peverite tha pramd potential
in terms of 3 dimensionlaz: seduced demsity, nife (o] -
LA

Saqinidl ]
o =  defil=nir))loil+nlr)) - i}

_; EL'-I * mﬁzjlrr _rl * -':'I.-rl- {4?_]

To zpproximate the density profile in the solid state wa can
gxpend the density in 3 plane waves,

alr) =he
G
Whara £z s the sat of raciprocal lattice wectors in the orvstal
lattice =amd the smplitedss £ zerve az opdsr parsmsters fod
froering A iz tha k = 0, of aguivalently the spatisl sveraza of
the density profile. In the ligeid phass all amplitudas as zom
and the avarame density iz uniform, whils in the solid phasa
thars are findte amplitudss that describs the paricdic profils
of the orwstal lattice. As we have choson the referencs fludd
to ba the ligwid af the meslting point with undiform demeity
g, 7 iz zero for the liguid phse at the melting point (for that
referonoa demeity) amd & iz the fractions]l demsity chames of
solidification, definad hera az p for the zolid phasa ot the
malting point, whers

Saelt: 48]

BT
(el
and inwhich g, iz the macmecppic deneity of the 2olid phaza
The smpliteda: are constrainad by the point sroup 2wm-
matriaz of the lattice. Goouping the amplitnds: of symmstry-
aguivalant reciprocal lattice vectors tomsther we can write the
demeiry, profile as,

n {49)

s x M
E.I‘G-lt .

= PP £ © 1

Whare o iz a labsl mmning over zstz of symmetoe-aguivalant
recippocal lattica wvactors. Dlogs poecizaly, if we apply tha
piojaction oporator of the totslly symmetric ssprassntation of
tha laftice poim group to the secipoocal laftice vectorz we
may labal the distinct linear combinations © with o [14]. The
membarz of thess distinct linesr combinations form the ==t
=1,

Hlhese hinear combvirations ase all formalhy egml o #eno 11 imporian
1o iread oposie veciors (v and -vi as ditinct for dhe sake of calkomlafing
he 2 G L.

1300

nlr) =

If wa ineart aguation 50 into aguation 47 mnd intesrats ower
tha unit call of the particular orystal wa wish to devalop tha
theoay for, we find,

r

Eﬂ_u;“u _ griinin = 1) In(nin + 1) - s}
M L '.:ll_ Lo .
— A EPn) + T pERIG A E [
2— 'Iw-\.g . | [
. {513

Wheare A, iz the number of reciprocal laftice wactors inthe zat
g A Ef.[k | iz the Fourisr transform of the direct comslation
fupctiop of the r=ference fluid. The first term in sguation 51
iz comvex in 8l of the amplitede: with 3 mindimem at =80,
It iz notoworthy, a= wa will disoess shotly, that the

.:-,-l‘.‘ = 153541:11}1: fumction of the strochee factor, 5k},
nama];;,,

B Cilk) - v k-0

Sk -1 (52
Shk)
It fs::u]lm:*s that zolidification must oocwr whan the product
“&E,) {or eguivalsntly, the safsfence strocturs factos
SolG.)) iz largs empush to stabilize a finite amplitods by
giastine anew mindimum sway fom zaro. Thiz phanomanon
iz sthown schom aticallyin figwra 1 wharatha grand potantial
iz proj ected on to aparticular £ axiz and plotied for di farant
values of the efarencs structurs factor. When the efaranca
structurs Eciors are less than some ==t of oritical stroctere
factors (demoted a= 5°(_)), only zaro amplitwds zolutions
ara stabla, When the referemce structuss factoss are oritical
both the zsro and non-zFero amplitnds solution: are stable and
wa find liguid-colid coswistence. Omnos the refsence stmnchene
factors are grester than oritical one the periedic crvstallins
zplutions iz stahla

l/ |
Ia"
- /

/

- —

Fig. 1: Schematic wiew of the grand potential 8240175 pro-
jectad om to gm £ awis fog thees diffsremt refsremos  strocturs
tactods. 10 MUmMMiZe the =rand potsntial, Dmts b, 13 stabls
e SolG) > 57(G)

Ik falkovars frem dhe definition of he sinectare factor and the Cmedein-
Aeamile eqEition
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Furthermorz, aguation 51 suggssts that the s=t of oritical
struchge factors, 576, J am material independerr 2= Do
frz2 paramater: remain in the zmand potsntial. Az 3 opoes-
guemea, once we specify the symmetry of the lattice a liguid
will =zolidify into {2z facecopirad-cubic), &ll matsrisls that
undermn thiz trameition should share thoss parsmaters ot the
malting podint.

Early numerical svidence of thiz result was suppliad by tha
Hanzsn-Yarlat criterion [15] which statss that for a Lenpand-
Jomez fluid the pesl of the strocters factor iz constant slong
tha melting curva with a yalwa = 2 ES It ha: haon notad that
in comparing experimentsl svidsnoe of a varisty of liguids
solidifiring to fig strocture, most hava b pedk valoe clos= to
2B whorgs thoes solidifeing into boc strwctese have 3 pask
valus around 3.0 [13].

At thiz lewal, tha CDFT theory of solidification iz an infinita
ofder paramsatar thepry of zolidification. Wa can simplify tha
thaory by truncating the nember of amplitwdes wa kasp in owr
ampanzion of the denzity. Thiz iz justifisd by noting that only
terms fiom the fisst fow racipgocal lattice familiss contain tha
majority of the prand potantisl ensrey of aplidification]13].

A= z=an in table [3 and tasble [ theosstical esult: from a
zingle amplitude theery (theory I in the 1ezults) are poor but
impaova significantly with two ordar parametsrs (thapay IT) oo
highsr podar expaneione of the frae snarmy (theoay 1)

VN

In zpita of itz swogeszes, tha CDFT theory of zplidifi-
cation cannot be a genersl description of solidification as
many matarisls pever folly reach sguilibrivm. The resulting
micmstmechse affects the mechenical propertizz of the solid.
In opdsr to impsove our thepry we nesd to stamins the
pathway systems take to oguilibrivm =0 we can understand
thasa micostrectural featres. W bamin with a baisf ovariow
of non-squilibrivm statistical machenics.

Dwrasis DeEnSITy Fusoriomsal THEGR?

A chendew of Nov-eguilibeiim Staristical Machanics
Conzidar 3 non-sguilibrinvm probability distribution owver
phass zpace Flg, .t Az 3 finction over phasa zpaca itz
aguation of motion iz 2 simpla result of clazsical mechenics,

df 2
g = U HYS L {33)
Wher2 {- -} denotss the Podizson brackst,

2 5 ag  daar

fok= _ I

Of couwrza the distribution muest romain pommalized in time
and thersfpee tha totsl times derivative must be zenn,
[ ar
duipflap:td=-1 T =0
ar
Acoounting for thiz conservation law in eguatiom 33, the
rezulting squation of motion iz callad the Limaglls Equarion,

af _
& = UG

i5s
{13

{560

Undar appdopriate conditions the probabdlity distribution, un-
dar the action of the Lipuvills Equation, will dacay to a stabla
fixed point £ g, p) wa call aguilibeivm,

I flg p:t -f.la. p) {57

Tzing the non-aguilibrivm probabdility distribution we can
glzo dizoes: non-sguilibrivm averams: of the density poofils
and their azzpciated sguations of motion. The non-sguilibrium
denzity iz written in amslesy with eguation 15 by taking of
tha ¢laszical trace of the density oparater over with the non-
agulibeivm diztribution

gl O ={o"x qb).=Ir [£"x qiflq p. td].

Whare () denotes the nop-equilibrivm averasa, iz, using
flg, p, 1}). Justas the non-eguilibrivm probability distribution
iz driven to sguilibrivm by the Lipuyille Eguation, 20 toD iz
the demeity profila by its owm aguation of motion.

(38)

B Egqwaion of Mbsfon for the Density

A varisty of sguations of motion for the demsity fisld
a3 lmown. For instanca, we can consider the Mawisr-Btoles
aguations of hydredynemics a= ons such aguation of motion
If wea restrict owrzalves to diffusion limited ciroemsetamcss, we
may derive a much simplar sguation of motion To achisve
thiz razult wa wza the projaction operator method and zsaemes
that the denszity oparator iz the only r=lavant variabls. Quotine
the result fiom [B] we find,

dole ) _y. gDy q-v SHa |
ar aalr. 1)
whas ¢ domotas diffwentiation with r, and Dir r, £} iz tha

diffesion tensor, h i
LS i

Dt = dETs flap ol O, ©) . (50)

58]

inwhich J [r, £} iz the local density flux,

B
p' 1
— &fr — qk
oy

4

dr. 1 {517
Theprizs wiing eguation 59 and varistions thersof a2 oftan
called Dhuamic Density Funcrtional Theories (DDFT) of at
times Time Dependant Dansity Functional Theories {TDDET)
thoush we will wzz the former throwshowt thiz wodk
The non-sguilibrivm diffiezion tensos prassmte 3 2ienificant

impadiment to inteprating thiz agestion of motion =0 in
practice it iz oft=n approximated. Following [B], if we aszume
that the posifion: svolve more slowly than the valocities and
that the momenta of diffsrent particle: e unopmralatad we can

dramatically simplify the diffision tenzor,

Dir. r) = Dalplr, B&lr - r). (62)
Whera Dg iz the diffizion coafficisnt,
g = _ . deTe [F g P Gel0) - gl - 163
am? g
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Theoty C(Gpig) €zl n

I 0.5 (1] [

o 065 0.23 0270

m 065 0.23 0. 166

Exparimant 065 0.23 0.148
{a] Freszing parameters for oo with comparizon to
Arzon expearimental rzsuls

Theory C(Gnig) C Gzl n

1 [ 10 ULO4E
I .63 007 0052
I 0.67 0.13 0020
Expeciment 0,65 023 0.148

] Frezzing parameters for boc with comparnison ta
Zodinm experimental rasuls

TABLE [: Frzazing parsmeters for fo¢ and boc systems and companizon to sxpariment from [13]. Theorr I wsas on= oodar
paramster, theory I wses two ooder parsmeters and theody T wses two oddel parsmsters with a higher (thisd) order expansion
in the fize enarey. g i the fGactional density changs of solidification fiom eguation 49

Substituting into aguation 5% we find a simplifisd sguation of
motion originally sugsestad by [16],

o TV PP Rgn gy o

The aguation of motion can al=o be writtan a: 3 Laneswip
asguation. In thiz wariant the aguation of motion iz for the
demsity, operaror, p°, snd the noiss iz assumed to obay a

Eeneralized Einstein s=lation,

&k o 15 ec
- Veoopilx t)Y .- = £x 1), (63
(flx oy =0 (66

([ B & )} = -2V « [Doplx W&y —x & — 2] -
67
S2a Appendin A for moge detsils on generslized Einstsin
elation: and [17] for a detailed dizcussion sbout sgustions

&4 and 65,

At timas, the diffizion temzor iz assumad to ba comstant.
Thiz iz common face in many Phass Fiald Crystal theories.
In light of eguation &4, thiz iz dkin to assuming the density
variatipns ars small.

Unfortunataly, if we were to us2 the sppromimats fres
sperey fimctional sstshlished in sguation 44 in the DDFT of
aguation &4 of 65 we would face a major impediment: the
zolid state solutions of the density finctional theory appooach
wigld shaply pesked solutions at the position of the atoms
in the lattice. Whils thiz iz 1=alistic, they a2 a2 major chal-
l=mea for nemearical alzorithms that sim to sxplors lons-tims
microstiucture avolution. The challengss are two-fiold. First,
thase shep peaks require 2 fine mesh to be resolved resulting
in intractably largs memody requitsmeant to simulate domaine
of any non-trivial scale. Second, linear stability amalysis of
most dlgorithms demonstrates that the tims step zze iz a
monotonically inoeasing function of the zoid spacing, thus
only small tima step: can be tsken on 3 fine mazh. This firther
restricts the time scales of micostruchere evelution that can
b practicality explosed to times scales comparabls to thoss
of molacular dynamics —perhap:s somawhat longar,

Ume prasmatic solution to this problem iz to further sppops-
imats the f=2 enarey finctionsl of eguation 44 insuwch a way
2= to prodwos a theory that retsine: the as:omtisl phevsice of
solidification but produces 3 solid state that is mode smoothly

peakad. Az we will 322 next, the Phass Fisld Crystal (PFC)
theoty, the topic of thiz thesis, sims to achieve precisaly this
balapoa,

K. PHasE FiELr Cryv&raL THEGRY

The phasa fisld coystal theooy (PFC) presamt: a zolution
ip the aforemantionsd pemerical difficoltiss facsd by DDFT
metheds by approximating the fise snerey insuch a way as to
1=tain the basic feature: of the theody using a smoothar zolid
state dascription of density . Btatting with the sppromimats
fi=ea enarey functional of sguation 44 we procesd as previously
by zcaling out a factor of the reforence demsity and changing
yapishles to adimenzicnlas: demsity nlfd = (204 — 2l

[
BF[nlr)] _ -
:' = drdln(r) + 1) In(nlr) + 1) - (1 - Bua)n(r}
1

—_ —E.r.h[.r: v o (n r) v nlr ) {68)

We then Tarlor expand the logarithm sbout the refersnce
density of eguivalantly slf = O, to fourth oodar,

8F] !ﬂ|_'rﬂ_ R-EJ']‘_R.EJ']=°+,_-}_L,-:|—'

O 7 5 12

lnr' 0 Illrr.' rlr 1 Lratd

— E..[.. gl [ rk+nlrl {5

Whera fha li can ba.d e seclefimine the. den

gty nld_sbowt its sverags. Most phase fisld orystal theories
dlzo wea 3 simplifisd aquation of motion a= well,

Arr '\:;\-H-H-ﬂ'lnlr'l
ar M fniry o

Az gllydad to sbova, thess two simplifications formally
maks the PFC theory different fiom CDFT, tuwming it instsad
into a type of Ginghure-Landan type of feld theory, whete
n fapdesants an ofde patamatsr that boacome:s pariedic in
the zolid stata. As has besm shown in the PFC literaters,
thiz apparently gros: over-simplification of CDFT manass:s
to comactly feproduce many of the gqualitative physics of =o-
lidification, suwch a= nucleation, srain boundary misorisntatipn
enafEy, clastic response and dislocation: in the solid phass,
vacancy diffusion and oresp, srain boundary premsltine, w3
capry trappine, and numarpus other sffects. By progressivaly
improving the pagzmstrization of PFC theosies, guidsd by
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inspertion of the utndatlying forms, PFC will be able to batter
gquantitativaly moesdal the sforemantionsd procassas.
X SarvieiEr Bivary PHase Fieon Crysral Blosels

In thiz chaptar, w2 Eview twe dimpifisd binay PEFC
modals; the origind binsry PFC modsl of Elder er al [18]
and the binary stuctural PFC XPFC) modal of Gresnwood
ef @i, [19]. We bagin by ouflining the binary PFC backeround,
followad by azvmmary and comparizon of aach mosdal.

L Binary PRCBACKGROUND

The multicomponsnt fize snarey fimctionsal for binary PEC

iz givam b
air)

et

=
o .p 1= drp(nln

-

Ll
{71
1 = ap (A= CBr risao (F).

-

drkmA 5

Uzing dimensionla:s density varisbles, the fras snerey fine-
tional can be rewTitten as:

8Fn. ¢ _ AElnl . 8F [ d . 8F . [n d )

&0 2a £a £

7

"~
L

The - ¢ comalations in the swosss oo onerpy &

o= 00 g + (1 - €)iC40 + 2c(1 - €)Cag . {73)
G = 20 (£Caa — (1 — c)Csn + (11— 22)Cag). {T4)
Lo ™ L {75

G ™ Po(Cag * Caa — 2Ca8l e 16
L OwmiGinar Binary PFC Moel
The original binary PFC moedsl sxpandz the fies snersy
around R = 0and o) = oo
I z z R
gl oAy
. -
The emoss: {122 snaEy i3 simplifisd wsing 3 gradisnt sxpan-
-i :I.
Culh F) = Co +C:VF +CV* S(r-r). {78
Colr F) =6+ WV Blr —r) (79)
Thiz modsl, though capable of simulating sutsctic and
dendritic growth, iz limitad to forming only BOC phasas dus
to itz simplifiad comelation fumction.

n

XIIL Binary Sreucrursl PHASEFIEL CrRYSTAL

Woel

The XPFC modal impaovas the ogiginal by sotsining the
full free enarey of mixing and snhancing the control over the
demeity-denzity comelation fimction:

Cle) =" e o . (B0)

Lo

-(1- &)ap (1)

Thiz formulation allews the XPFC medsl to desoriba a
varisty of orpstal lattics strocturs: and phass diasrams over
a wide ramgs of concentrations.

IV, DarrowEMENTS 10 THE Bixary EPFC Mokl

In thiz chapter we present two significant snhemosm ants
to the binsry EPFC theory. Thess impoovemsnts are noveal
contributions to the fisld, substantially extending the scops
of the XPFC framewogk, The first snhancement imvolves
modifiing the fee enerey of mixing in the XPFC modsl by
incodpodating an enthalpy of mixing. The 2scond improvement
g=naralize: the phenomenelogical form of the tro-point oog-
ralation finction in binary allovs.

IV AmmnG an EvrHacey oF RxinG

102 SWISHEON Of 102 28 SNy Of DUNDE DSyoDa 10281
pixing iz achisved by removine the assemption mads by
Creonppnd of @l that the concentration-concsntration oog-
2latipn function hes: no k = O mods. This spproach iz
consistept with the original PFC modsl, while r=taining the
InEnpandad i-.’i*l mixning tarm 3= in the original XPFC alloy
modal, Spacifically, the comelation finction iz saxpandad as:

Colr F) = 8[r = rloge + WV +...

The rezulting modal has 3 ffes snerey of mixing sgueivalant

1o the resular solution modsal, astablizhing a clsar connaction

with widaly-nzad modals in materisls scismee. Thiz formula-

tion capturss the es:amtisl physics of 3 non-neslizible enthalpy
of mixing.

(1)

VI GeEMERALIZING THE Two-Boas T CORRELATION
Fundrioms

To dovalop a genaral phenomanolosy for modaling daneity-
demzity comrslation finctions in alloys, we axpeess the density-
dansity comrelation finction a= a linesr combination of imter-
polating finctions in concsntration, Jc), multipliad by bana
comalation functions O, r) of individesl componsnts:

Geolf Fic) = = Llelgie FL
;

whera the indsx | zarves a2 an erbitrary labal, In the orizinal
dlloy CDFT theory {2guation 27, for instance, we we the
labslz {44, AB, BB} with intepolation finctions:

(8]

Laalc) = poll = c5), {83)
Lamlc) = poc(1 - c). (84)
Lawlc) = poc®. {83)

Thiz suggests a now defindition to generalize the dansity-
dansity comslation fimction for a binary alloy: The labsls 1
cnumerate the set of crystal structurss present in the alloy
gystem. The corralation fimctions, Cr. r), modsal the orpstal
structure §, and the associated intspolation functions Sfc)
dafipe the concemtration rangs: whars thesa comslations am=
valid.
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4. Exmmple: Sihver-Copper Ewtfectic Alloy

Fog tha zilvar-copper sutectic alloy svstem, we stan with
cofralation fimctions for pute zilver, O (r r), and puis cop-
pat, gl r r). Thezetwo struchras, tha silver-rich o phassand
tha copper-rich 8 phasa arsthaonly two relavant crrstallins
phasaz. To build the full denzify-den=ity comalation fimction,
we dafine interpolating functions for sach phass:

Lole) = 1— 36 & 208, (BE)
falc)=1-3[1-c)F+2(1- )2 {E7)
Tzing the originsl XPFC formalism for bars cogrslation
finctions {aguation 7, we can modsl the o and § phasas,
which ars both FCC [20], a= in [21].
VI
Thaza two modifications to the ZPFC formalizm allow ws
to study a broader ramps of systems. Thiz saction explogss
tha aguilibrivm pooparties of the improved XPFC fes anerey
functional, specislized for thies diffsrent materisl phase dis-
Erams; Sutsctic, sxmiachc, and menoischic.

EguiLigrius ProrERrIES OF Binaky ALLOYS

A Ewreciic Phase Diagram

Pizvious PFC modsl: have demonstrated that alastic snsrzy
iz a sufficient driving fooce for sutsctic solidification. O
ezular splution EPFC meodsl, howsver, snsbles an analvsiz
of the mols of ewthalpy of mixing in sutactic zolids. Fog
instanca, Wurdoech and Schub obesrved that in papocrrziallins
binary allovs, while a positive anthalpy of zagresation can
stabilize asainst grain growth via solote sssregation at the
giain boundary, an excsszively high enthslpy of mixing may
lzad tp zepomd phasa formation of sven macreecopic phass
s=paration [22].

The pair com=lation finction uwsad in the binsry XPFC of
Greenwood ef @l cam be recoversd with the following chodce
of int=rpolation fimctions:

L lc)=2c% — 302 2 1,
Lalec) = L(1- c).

Figut= 1 zhows tha sutactic phasa diasram for 2 trismgolar
g and § zolid phazs.
B Javtectic Phase Diagram

Ot impaovad XPFC modal can alzo stody varions invariant
binary reactions that have not vet beon examined using phass
fiald crvetal modsl: swch a= the sypisciic eaction, h+lz — o
E¥x zstting the spingdsl tempsrsture T sufficiently high and
LSinE an appoopdiate concantration window fumction Jfc), we
czn simulats 2 septectic phazs dizzezm (Fig. 77
C. Monatestic Phase Diagram

The monolectic reaction, h—& + [, inwdves the dacom-
pozition of a Hguid inte a soluws-poor zolid and a soluts-rich
liguid. To modal a memodsctic, we =at the spippds] temparainge

(&8)
(E5)

s
= LS DT e AL
o My gnd abin bpaal bl
i3 - g ey g L
1 LR |
|
-~
=
= L1
5 3
;
-]
[=
B 4
B =
L]

i [
Carairntralion §o)

Fig. 2: Eutactic phase diagram for & and & phassz. Pa
fametaE o p o= L, ¥ = 1, w = O0Z, &g = 266, and
T = 0.15. Structura fiungti on paramaters: oo, = Jog = O

kg, = 2R, kigg = 4%/ 3, and Ty = L. The horizontal lins
demotes the sutsctic tempersfurs.

kizhas than the zolidifi cation temperature and e a window
function cemtared at ¢ = 0.

IVIL  APPLICATIONS

Thiz chaptsr =xplores application: of the snhancad binary
XPFC modsl from Chapter X1V in microetrociere avolution.
Wa introduc 2 phenom anelogical sgquations of motion for zoluts
and demzity diffuzion within the binsry HPFC frsmewod:
and apply them to stedy diffision-limited precipitation fom
solution. Pecent axperiments on gold and zilver nanoparticls
precipitation [13] and calciem cabonats precipitation [24)
have shown deviations from Classical Muclestion Theooy
{CKT), notably zpippdsl dacompozition preceding nuclaation
in soluzrich phasss. Hae, we present preliminary findines
suppodting thiz dynemic bahavior and demonstrats mors oodm-
plax. post-nucleation growth bevond typical diffusive srowth
and cparzaning. Fotere applications in precipitation stediss and
other arass are alzo disorezad,

A APEC Dhamnics

Following [19], we employ consarvative dynamic: for both
nlx o amd ofx o

dnlx o &l BAF i)

2
- 8.V = £ i, {0
at alx t) ol #0)
dofr 1 2. Bl8aEfaa)
ar =AY el ) + E =, ¢, 191

Thata M. ad M, are mobilitiss, and £ [x ) and
£ [x 1} r=prezant thermal fluctuations obaving the duwcheation-
dizzipation thaofem (323 Appeandin A). The:s sguations ars
phenomanological, azzuming local concantration conssrvation,
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which bolds whan totsl density daviations a2 minimal {c =
BsPa).

XX MuLri-STEr WUCLEATION OF MANGPARTICLES 1N
SOHLUTION

4. Nuclearion Theories

Clazzical MNuclagtion Theooy (CHT) describes the nuclsation
gate 4 vis sn Asrhendn:s exprsssion:

1= fee, ©2)

whaiz A iz a prefadger, 46" iz the Gibbe fres sneggy
bariar, and p® iz the pembear of critical neclsi. The pud eation
probability for a droplst of volume W oiz:

Frsadt) =1 — & /¥L

CWT assumes 3 singls oritical stabe charactsrized by a
critical madin: R°, often undsrestimating pucleation times dus
to overzimplifisd Linstic pathways [15], [26], [27]. Expanding
the paramatar space to includs additional variables liks dansity
AN impaove asresment with experimantz [23], but zelscing
appoopriate paramsters remain: challenging.

Won-claszsical approachs:, such as the XPFC alloy modal
offsr an unbiazad Fameawork to investizats nucleation without
pradafined parameters. By nemernically intsgrating the agnas-
tinns of motion, the EPFC mods]l can capturs the full kinstic
pathway on diffizive tims zcalss, unlike molsoolar dynamice
of traditions]l deneity fimctional thapay.

(83

b Modeiing Precipitaiion

To modal swztemz like zold nanopatticls precipitation
[23], w= dazigm a fizs snarpy finctionsl with a submsrzsd
matastabla spippds] baneath the liguid-solid coswiztancs curya
[28]. Thiz zstup snsure: that spipedsl decomposition of the
matastabla liquid pracada: puclsation from zolution.

e cantar the interpolation fimction I (<) &t ¢ = 1 to favog
the pappopeziallins zolid o at high concantrations. The denzity-
dansity comalation function for 2 2D hewasonal precipitats is:

- —1F I ~ k)2

Cowal ks €) = 23R —lc?— s s —%
I g

54

whare g control: zolvant =olubility and kg iz the [10]
feciprocal laftice vector length. An exampls phass diastsm
iz zhown in Figuee 3, illustrating the metastabla hippdal and
zpippdal balow the coawiztanca corva,

.03
bep e} Sl CisEu Bl
%% P i g Eetaa Il
el BELa0E Al o
053
i
E o
- |
3
2 030
k
i 0.1%
012
f.0r5
.06+
[-1-] [ i LY LE (K-
Concontraton |}
Fiz. 3: DPhaz= diazram of a precipitating solution with a

hawasonal o zolid phass Parsmeters: g o= I, ¥ = 1,
=03 5y =30, F, =015 ¢g = 05 Comslation finction
parametars; o= 08 kg =2m, To =1, g = 0.5

. Dhnamics gf Precipitation: Reswits and Discussion

Wa simulatad pracipitation by guenching 3 undform zolution
{c = 0.3, n = 0.05) balow the matastabla spinodal {T/Ty =
0.07). Figere 4 illustratss the microstocins avolotion:

- Frames (8- Spinods] decomposition into solutarich
and poog f2Eions.

« Framez (dHf); WNucleation of the zolid phass within
zplute-rich razions.

« Frame: {gHi) Growth and cosrzening of nucleated
meanpparticlaz.

Thiz zagnemcs consistantly showsd that once soms zolute-
rich regions crystallize, their srowth accelerate:, depleting so-
lute foom r=m sining feion:—a phanomanon tem ed sacrjiforal
EPoETRL
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2] ) =

) Y

( ® )
Fig. 4: 5tams: of nanoparticle precipitation: (3-4c) Spinadal
dacomposition; {(dH) MNodeation and =acrificial growth; (2)-
{i) Growth snd cosrsening. Parsmetsrs: ¢ =003, p o= 0L05,
A= M, =1 W =30, Ax = 0125 lattice size 1024 =
1024, Af= 00025, T = OLO7.

To guantify thiz behavier, we analyzed the mean radin:
gltl Aft) oyer 120 simulations. Pumly diffisive
growth pradicts (B[ 3 ~ V%, whils cosssning follows
(gl b ~ %% Figers 5 dizplavs (8lf Jon a log-log scals,
Eyaaling hyper-diffiezive esrly growth transitioning to hypo-
diffieziva cosrzaning.
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Fig. 5. Measn droplat radivs(B[f) Wemus tima on a log-log
plot. The black lins reprasantd gf} ~ V2. Early stages
axhibit hyper-diffiszive growth, followsd by hypo-diffiesiva
CREmSTinE.

Additionally, the fraction of ypgrystallized droplsts das-
oeaza: significantly aound 50% oystallizstion, a= showm
in Figu= & indicating suppieszsd pocestion rates dos to
zacrificial growth.

e = — -

—

OO0 PSOO00 0000 F000 GO0 SSOOD] SO0I00 sao0td

Tame
Fig. & Tima avplution of the faction of ppgryetallized

droplats. A sharp dacline gpopmd 30 %% coestallization raflacts
raducad nuclaation fabes.

X ConmcLusions axn Furure DIRECTIONS

Thiz chaptsr demonstratas the application of the enhancsd
binsry HPFC modal to nanoparticle precipitation, suppoting
axperimental obssrvations of mon-classical pocsation path-
ways involving spippds] dacomposition precading nuclastion.
The modsl 1ovesls zacrificial growih dynemicz leading to a
bimodsl namoparticls size diztribution, slisnming with sgper-
mantal findings [13], [24]. Futere wodk will =fins the ZPFC
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mpdial to incofporats factors like swrface snarey anizotropy and
splvent offects, and =wtsmd applications to muli-componsnt
allowvs, erzin boundary dynamics, and phass transformations
unvdar exntemal influsnces such as themal sradisnt: and felds.
Tha warz atility of the XPFC framewor: promizas booad wtility
in advancing the vndsrstanding of complay matarisl bahaioss
and desigming materials with tailoded propsrtis:.

XXL Ourioesk as FUTURE APPLICATIONS

The esults presentad describe the behavior of a guench
followad by a multi-stsp precipitation procsss, =lavant to the
pracipitation of mold nanoperticla: obssrved in fscemt syperi-
meants. Thase pradictions were made wsing 3 singls framewod:
bazad on the improved XPFC alloy medsl developad in thiz
thesiz. The dynamicsl results indicais a rich landscape of
kinatic pathways for pracipitation. Futers applications inclwda
anplofing the influenca of guench parsmater: and zolution
concantration on noclestion Linstic: snd polwdispersite of
precipdtated particles, key fosturs: of swperimentsl intersst.

XN COMCLUSION

Thiz resasrch had thres main goals: (1) introducing an
anthalpr of midine to account fod pon-idasl mixine (2
davaloping a phenomenolosy for modaling density paif opgre-
latipn functions, and (3) applyving thess improvemants to study
multi-ztap necleation pathways in peecipitation. Chapter XTW
ditailad thaze sxteneions and their resulting aguilibrivm phasa
diazram:, captoering feators: like 3 submerged mstastabls lig-
wid spimpedsl balow the sutectic point Chaptar Z0VI showad
that thiz modal can seproduce multi-step nucleation pathways
zaon axparimentslly inzilver and gold namoparticlss [23].

Thazs improvemants to the XPFC alloy modsl hava further
potantisl applications, such as studying clasticity =ffactz on
monotactic and symtschic puclsation and srowth, 2= wall a=
the stability of papocrEstdlline binsry allovs, which depend
pn the svetem’s anthalpy of mixing [21].

APPENINX

“Whan using Lameovip eguations to study non-sguilibrium
statiztical mechanics, the nodse strength cam be linked to the
tranepot opaificientz throush a gsnerslization of the Einstein
ralation. The gamerslization was first devaloped by Cmeassr
and Mlachlup [29]. The typical stratesy for dariving such 3
felationship iz to ovaluats the sguilibrivm pair comelation
function by two separate methods: the eguilibrium parttition
finctional and the aguation of motion”.

Whils the aguilibrivm pertition finctionsl sives peif opd-
falation theough the typical statistical machanical caloulation,
the eguation of motion can be uwsad to derive a dynamic pair
comrelation finction that must be agusl to the aguilibrivm pair
codralation fimction in the long tima limit.

In what follews wa'll look at how to formulate 3 generalized
Einstein flation fiom a gameric Lapeavin aguation and them
caloulate two specific sxamplas using Wodal & dyneamics with

“For coremideratiore far finom equilitemm see [30], [31]. [3X]

& @* theory and Tima Dependont Density Functional Thapoy
{TDDFT) with a genaral Halmhboltz fizs ansrey

Wa start by considering a a2t of micoscopic obsarvablas,
gr, 1), that are govemad by a nonlinear Lapmevin equation,

dalr, o
dar

Whera a, dsmotes a vector of owr fislds of imbersst. Thesa
microscopdc aguation of motion may have beon darived from
linesr fespomsza, piojoction Oopsatods of some othsr Don-
aguilibrivm formalism. We assume that the smdom driving
force, £, f) is unbiased, Gaussian nodss that iz uncorslated
in timsa,

= Flalr t)l + &Ir L) v

o ifl.cEriL -0, {08
grofir.t) =Lirr)dt-t). L]

Thiz azsumption iz justifiad by positing that the stechastic driy-
ing fogcs iz the azgieested affadt of many random micioecopdc
procasses that satisfy the centrsl limit theorem 20 we may
aszuma 3 Gapszian form. Wa wizh to constrain the form of the
covarianoe matrix, L, by demanding that the solution to the
Lame=vip sguation svantuslly decays to aguilibeivm and that
cofrlations in eguilibeivm are given by Boltemann statistics.

W2 begin by linasrizing the sguation of motion sbout an
aquilibrivm  selution, alr o = &[4 = d(r. 1.

dalr £ R R .,
. -Mrr) adlr.t)+&grt) {28)
4t
VWhara sionote: an innsr product and intesratiom owar the
1=paatad variabla, 2z
E I
Mir. rj+d(r) - drivide rldgir). 9]
i
“We can formally solve our linearized eguation of motion,
I _
A(r ) =gMiutiaalr, p)s  GmeE T s Er T,
a {10600

Conzidering the prodect M{r n)#L[n, r} and pedforming
an intesration by parts wield: the finsl generslized Einstein
Elatipn.

Lirrj= — M(rnlsL(rn. rj+I(rn) *M(n.r) !
{1017

Az wa can 222 from eguation 101, near aguilibeivm the nodzs
comrelation function iz a simpls function of the pair oogels-
tipn function, I'[r, r} and the linsarized tranesport coefficient
M~ r).

Az 3 zimpla chack we apply owr rezult to the original wodk
of Einstain. Flacall that in the over dsmpad limit the aguation
of motion for the valocity for a 1 dimenzional Brownian
particla iz,

= —¥an = L0 {LUL)
dt
Thiz aquation iz slr=ad linsar 20 we can pick off the linearized

tramspodt cosfficiant a2 -y The pais comclation finction in
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ggniliboine, iz given by aguiparition, thaprem a=,
kT
g - .

{103}
O
Simply applving aquation 101 we find,
. K £ .
(gl =2 o &t -t} {104

A= empactad. Satizfiad that sguation 101 reducss to the comact
g=sult fof the bass cass wa pooosad 1o =xamine two sxamplas
that are guininaly nonlinear fisld theories.

A AL FETE TSP

lation consider the following free enerpy fonctions] wndsr
nmme. dizzipative dynamics.

) 1
8F[gd] - dr ‘ll'»"ilxll“' + fdvf[xn a%;i-"*[xj+h[x:|¢[x:|
{10%)
ddx S8F[]
| + §x 1 {104)

- - T
The r=mdiom driving forca, £ iz Ganeiisn nodsa unoogralatad
intima.
(§lx ) =0 {107

(5 oy o)) = Lix—x &t -] {108)
To computa the Einstain alation for thiz thepry we start by
caloulating the pair comslation finction wsing the agurilibrizm
patitipn function and Boltemanm statistics.

A The parrition floaction ronre
In aguilibrivm the probabdlity of particolar fisld confimsra-
tion iz iven by the Boltemann diztribution.
£ AFl
P -
Feul®] FALIEY]

Whem Z[h[x]] iz the partition finctionsl and is given by a
path intages] over 8l fiald confi merations.
i
ahld] = D[gle K (110
Evaluation of the partition fimction iz of some impostanca
bacanea it plavs the role of a moment ganorating fimction.

1 Skl

Z[R] hlx).--Ghix)
In gemorsl the partition finction cannot be computed disactly,
but in the spacial caze of Gapssian fres anereie: it cam. To thet
and we consider axpanding ¢ around an aguilibrivm solution,
difx) = g+ A x), and kaspine tam = to guadratic ordesrin
tha fi== amargy.

[

{109)

{111}

R T B o PN T B ‘I"ﬁ"
N

puts in gemers] bot Geussisn fonctionsl intagrsl: do have 3
golution.

1} Computing the Par correlation fliaction in the Gaussio
approximation: To compute the peir comralation function we
=2 the Fourier space variant of the partition fimction,

' LK R

17 .
z 0

The pair comslation fimction, {Ad(k)ad (k) ) is then com-

puted vsing aguation 111.
D E
ML) Aotk — _2mf[k + k]
} } F+ Sy + ||

R T ST SEEE Y

Zih(k)] =exp {113)

(114)

The sguation of motion supplizz a zscond method for
gygluating the pair comrelation function in eguwilibrivm.
7]
22 ot (- VA Satx ) < s, @19
Cror ageation of mptiop can be linsarized sround ano agud-
librivm zolution, g just 3@ we did in the partition fimction
rout2 to the pair comelation function. In a zimilar waip we
will Fourisr tramsfioem the squation of motion as wall,
dngik. b .
— =P (r+"g o k[ )adlk 1) +£lx 1)
{116)
Comparing with owr semarslizad appooach we cam fead of
Mk k) fiom ths lipeapad sguation of motion:

Mk E) = —[_Ir + ﬂ;_ﬁ o~ € Ak k) (LT

Finallv, once we computs the gensrslized Einstain relation
with owr spacific pair comelation and A [k, k) we find,

Lik k) = 2r&(k = k), {118}
Or aguivalantly,

Liw, x) = 2Mé(x — x). {1127

In time dependent denszity fimctional theeay (TDDET) we
have sn eguation of motion of the following foom,

Ly L] e

-0 V. i

ar 2 il
Whera, Dy iz the aguilibrivm diffision constant and £ iz the
stochastic driving forpe. W azsume onoz azain that the drivine
foroe has no bias, but we pow allow the nodza streneth to be
2 gemeric kemal L r

alr. 8% +fr g (120

(§lr ). =0 {121}
(i glr St} = Lir r 8 — ) {122

1
BF[p] =  gr .Tﬁ[ r-s u.uj; Il_rtd:[.a‘,l — hix)aglx WPair Correlation foeme ihe Partition Funetiona!

(112}
Harz the partition function iz writt=n in 3 suggastive form.
Az stated previously, fimctions]l intesrsls am difficelt to com-

The first term we can paglact a= it adds an ovarsll scala
1o the partition fimction that will not affect any of momants.
Second momant only shifts the averase 20 we can ignode it
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2z wall and 20 wa'r2 laft with a zimpla guadratic fee aparEy
OIO2 AZEin.

Flol-, dr deaelr (nriaslr)  (23)

Whara ' [r r) iz the zecond finctional derivative of tha
fras enargy fumctional in aguilibrivm. Computing thepair
cogrelation fimction from the partition fimction vislds, 2= mizht
b expactad,

(Aplrplr )y = e

D Lineqgrine the aquaion qf motion
Linearizing the aguation of motion about an agudlibrizm
solution we find the follewing form,

Mplr t) o . AV Uk F) o+ aeir, )
Ar 1 =

{124,

+Z[r. t)

{125
Onca amain wa can read of the kemal A(r r) fom the
limasrized sguation.

Mirr) = 0oV - plr® i r) (125)

Plugging into the generalized Einztsin relation, we find 2 the
factors of the pair comrelation cancel giving & simps form for
tha kamal Lr r).

Lip r) = =200V - (g [ri¥) &ir—r) {12T)
1} Gaussian Fimcrional fnreprals: Solutions to thi= intagral
a2 oot only important in fheiz omxm right but a2 alao the basiz
pefuthative technigues. The detail of how to solve this integral
¢an ba found in [33] and a2 repeatad here for the convendsnca
of the readar.
This integal iz simply the continwem limit of 3 mulfive-

able (apeziam intagral,
S = -
. = =
7Tkl = o gxps 1T L g . BEL -
; . P ; -
{1283
Fod which the solution iz,
= R -
Zh] = K et K Th {1249

;ﬂm 'zl'_r R

In the continuem limit, the solution ha: an apalosoe: fogm.
| |
7 [B0d] o 8¥p o

1
gy ThEEK [x x)hx]
z
{1307
Whare K7 iz dafinad by,
I
dr = x ) V. x ) = Slx - x). {131)

Tltimatsly, we don't nesd to womy sbout the constant of
proportionality in sguation 130 bacauzs wa'll ba dividing thisz
contribution when caloulating comalation fimctions.

When davaloping the binary PFC modal we oftan changs
variables from g, and gg to » and ¢ This chamge of varisbls
iz halpfirl in idsntifyring the resultz of the PFC thepy with

gztghlizhad resultz in the fisld 2= concemtration amd total
demzity a2 more commonly uwsad in the fiald of material
ifismpz. Computing the bulk tsem: {2, aF . [n ¢] and
A Fy[n] fom aguation 7Y gnd *? iz a matter of substitdion
and simplification but computing the change of variabla: fior
awosis free enorey can be mode subtle. When computing the
pair comelation terms, carsfil application of owr azsemprion
that ¢ varies over 3 much longer length zcals than » must ba
appliad to gt the comrect solution. The gosl, ultimately, is to
find ... Coe Lo and .. in the following axpression,

LOa % P0Caa ¥ D04 = 2004 + PaCap * O0p + O0g ¥ D0Cps + L0g

{132)
-k T, A+ 2ok T kA S A T A,
Whatz f+C * g iz shosthand o,

dr dr Findr rigln.

{133}
Wa bagin by rowrting Apg
Bgp = 0 — podo
=85 T Lo +pfo T podo
= D 4+ polid,
And likewiza Ag,,
g, =g(1-c) - poll - co)
= 8g(1 - ) - poiic.
With thoss fogms established we demonstrata the general

process by computing one term ineguation 132 Age v Cgg+
Apg We bamin by sxpanding &g,

Lgg * Can + L8g = (886 + polc] + Cag + (L€ + polic)
= Lo+ Cag + [DGE)
+ pobic * Cgpg + (B0
+ po (BGE) * Cag +AC
* 0500 % Can £ 00,
If we ewamine one torm in this expeameion in detsil, we mots that
wa can zimplify by wzing the lons wavalaneth appoocimation
for the concantration fald,

{134)

ARECag + Boc = Bolrclr) rd:‘ Caslr = r )8olr je(r')

= 8p(ric’(r) gt Caslr— rlop(r).
{135)
Thiz iz becapza the concantration fisld can be comsiderad
oetenzibly comstant owver the lsngth zcals in which Cgelr)
variezs. Foacall that the pair corralation fimction typically dacays
to zaro om the osder of zoversl particls radii. Using this
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Sppiomimation we can fwTite eguation 134 as,
be Cog + Dy = AP ':EI:HH ¥ Dy
+pohe (© Cmea ) » D08
+ polp (C Cpg) * AC
+ GEOL Cap * OO

Puapesting this proceduss with the remaining thess terms and
than fesroupine we can easily idemtify the reguired pair

o= P9 €2 Caa+ (1 —C)E Can+ 21— ¢} Cag

(136)

{137

o™ = Po (€ Cag — [1—€) Can+ (1 —2c) Cap)
{138)
fus = P0 [Cag *+ Caa — 2Cag) {135)

Thiz Appsndixn pressnt: 3 genaral appocach to imesratine
nonlinesr stochastic partisl diffsrentisl eguations. An gz
Fiatinn schema for the binsry ZPFC sguations of motion iz
prasantad as a3 particular application.

To start, we considsr the gemeral cass of time st=ppine a
svstem of non-linsar first-ooder PDE'z. Spacifically, we a=
going to look at asst of stochastic non-linsar PDEs,

Aox o
Fri o

-G Blx f +Fx 0. (140)

Whets,

Wx 1) iz a vecter of our fiald:s of intersst {ex: (n, <)) and
wa've usad Tt denota a vector,
G iz some driving force for our fislds and,

£lx 1t} iz the stochastic driving fooce with variances miven by
3 gemeralized Einstsin relationshdip.

To davelop a zami-implicit method wea ztart by zplitting tha
functional G into linear and non-linear componants,

o X T} 1 7
- Illﬁ-;xj gix, o = NL o =Hxt) (141)

4t
Wheara,
L denotes the linesr contribution and “denotes a matrix,
# matrix multiplication and intezration ovar the repeatad
NL iz the non-linear componant of the the functionsl G.
In a spscial s=t of PDE's the kemsl 1. is teamslationalls
invariant. Whan thiz iz the caza, the convolution theodem can
b2 w2=d to write the linssr fumctionsl a= an algsbesic product
in Fourisr spacs.
aplk, =, —, - .z
Sl LKk 0 +F NI 8k o
Whara, H | demote: a Fourier transform. Wa now considsr
ouf fisld: on a dsorste grid with Ak spacing betwesn Fourisr
modes and AT spacing betwesn timses swch that we might
dafins,

(142)

@ = Plak na).

THode fhad we ray ako ke advantage of dhe fact hatl T = G

{143)

To develop a generic appooach to time stepping we considar
avaluating our fisld betwesn grid points in times {2

= N at I:':'I':|-'\-"\-"\-
whez ¢ € [0, 1]
wn +1
J

—_—

n+1
Vit

Fig. 7. Bchematic of time stap

To first oodar we can appoosmimate thiz valus 3@ a linesr
interpolation of the value at nand the valus at v+ L

—h — 1
. [ (144)
Wa can also approximate the time derivative Ju as,
pasi]
e @ Wy 1-2p For
_— = + at =+ . {145

LA 4L £

ArE
Dieriving different integration s cheme: iz done by evaluating
the aguation of motion for variows valuss of . For sxampls,
to raoover simpls Enlsr stepping we can evaluats the aguation
of motion with y = 0. The ssmi-implicit schems =lay: on
avaluating the non-linesr componsnt of the sgeation of motion
at y = 0 while the st of the equation iz evaluatsd at p= L
In this treatment we will avaluate the pon-linesr componant at
F o= 0 but we will lagva the st of the sguation unsvaluatad
20 that ¢ can be chopssn fresly at the end. Substitding thass
razults into aguation of motion wa find the following r=zult,

The finsl term on the right hand sids emphazizes that if we
chops2 ¢ = 142 we will have g almorithm that iz acourats
to second order im time (thiz iz a kind of Crank-lNicolzom
meathed). If we choose p = 1 we 200ver 3 semi-implicit
mathod. _

Important to nota in the stoctore of 1. is that it is diasonsl
in the limit of zmall w. In the sppoomimation that it i
diazpmal, previcus algorithms fog the binsy ZPEFC modal ars
2ooverad whars to linssr opdar, concamtration and demsity
may beindapendently intezratad. Anctherintaresting cazais
that of ., = A, where the matrix is symmetric and thus
ha: orthogonal sigswvactors. Wa proosad by considering thiz
simplifi=d cazs whera the concontration and density are weakly
ocouplad at the linesr oodar and may be intezrated zapapataly.
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. . o ot pomsider that.
The comcantration squation of mation iz, Hsarz amsin we find the zams stochers a: praviowsly:
A= =M e+ W EE+ FInL(o)} = £ . (146 el - PR SOFIN Uth +LEx (156)
Whars NMLIc) 15 the non-lnesr term and & 18 the dnve nodss. Herz the oparstors £, O and [ are:
C 1-cC 1
MLlC)=@1=n) In — -l = =7 LT et
co 1-@ 2 _ B oaq - DMK (157
(14T 1+ Enmmg k-
Mow if wa think shout the solution to thiz sgeation at tima - m kN 158
(74 tima batwean [ and 77 we axpress the solution as e nEER [ {138
an intspolation betwesn the zolutions at the ssrlisr and latsr : At {156
ﬁ.ﬂ.‘?&- 1 +ﬂw
it [ = EJE e T {143
E & £l

We alzp find that we can expyess the tims derivative as finite
diffsramge plus a comaction temm.

ees
= —o~ 1 =28 & ¢
Of == =+ A &+ . (148
At 2 4 (148)
Mloving firters times to the laft and past times to tha right

wa find,
il noey 26 -1 -

T " ar 7
£ = PO AgENUe Restds + Tt (150
Whera the operatoss F'-: 0 and F_aﬂ_

B -y _ DEDLK) . (1513
1 - Enrnlk)
A A0
--— {152
Q== s » {
i —&8E {153)
1- Ak

Dhifarant valwes of £ lead to diffaront intesration schemes.
Thaf = O comasponds to sylartim astapping in fpugisr space
whila £ = 1 vialds the offen wzad sami-imyicit fpurisr mathed
There iz an import case in which we chopzsa £ = 172 whers
tha algorithm bacome: acourate 1o 220ond opd=f in tima. This
iz the Crank-Michol:on fopgisr method

F. Aigorithm for the Toral Density nlx t)

“Wa can devalop an algorithm for the eguation of motion
fo the total demzity in the zame way that we did with
concantration. The sguation of motion for the total demsity
infpurisr zpace looks like,

A Mk &) = —M (A = F{NLm)} -I-f" {154

“Where now the ponlinear term dis,
R2 i
NL(n) - —n% +x§ + Af () - CO+ (155
Mot that the convolution term iz nonlinesr bacauss of am
implicit dependenes on the concenteation. MNow, in principla
vou could computs that pair comelation fimction avary tima
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